Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege74 | Structured version Visualization version GIF version |
Description: If 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then every result of a application of the procedure 𝑅 to 𝑋 has the property 𝐴. Proposition 74 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege74.x | ⊢ 𝑋 ∈ 𝑈 |
frege74.y | ⊢ 𝑌 ∈ 𝑉 |
Ref | Expression |
---|---|
frege74 | ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege74.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
2 | frege74.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
3 | 1, 2 | frege72 41073 | . 2 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
4 | ax-frege8 40947 | . 2 ⊢ ((𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) → (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5027 hereditary whe 40910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-frege1 40928 ax-frege2 40929 ax-frege8 40947 ax-frege52a 40995 ax-frege58b 41039 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ifp 1063 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-opab 5090 df-xp 5525 df-cnv 5527 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-he 40911 |
This theorem is referenced by: frege81 41082 |
Copyright terms: Public domain | W3C validator |