Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege109 Structured version   Visualization version   GIF version

Theorem frege109 43299
Description: The property of belonging to the 𝑅-sequence beginning with 𝑋 is hereditary in the 𝑅-sequence. Proposition 109 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege109.x 𝑋𝑈
frege109.r 𝑅𝑉
Assertion
Ref Expression
frege109 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋})

Proof of Theorem frege109
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frege75 43265 . 2 (∀𝑦(𝑦 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) → ∀𝑧(𝑦𝑅𝑧𝑧 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}))) → 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}))
2 frege109.x . . . . 5 𝑋𝑈
3 vex 3472 . . . . 5 𝑦 ∈ V
4 vex 3472 . . . . 5 𝑧 ∈ V
5 frege109.r . . . . 5 𝑅𝑉
62, 3, 4, 5frege108 43298 . . . 4 (𝑋((t+‘𝑅) ∪ I )𝑦 → (𝑦𝑅𝑧𝑋((t+‘𝑅) ∪ I )𝑧))
7 df-br 5142 . . . . 5 (𝑋((t+‘𝑅) ∪ I )𝑦 ↔ ⟨𝑋, 𝑦⟩ ∈ ((t+‘𝑅) ∪ I ))
82elexi 3488 . . . . . 6 𝑋 ∈ V
98, 3elimasn 6082 . . . . 5 (𝑦 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑦⟩ ∈ ((t+‘𝑅) ∪ I ))
107, 9bitr4i 278 . . . 4 (𝑋((t+‘𝑅) ∪ I )𝑦𝑦 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}))
11 df-br 5142 . . . . . 6 (𝑋((t+‘𝑅) ∪ I )𝑧 ↔ ⟨𝑋, 𝑧⟩ ∈ ((t+‘𝑅) ∪ I ))
128, 4elimasn 6082 . . . . . 6 (𝑧 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑧⟩ ∈ ((t+‘𝑅) ∪ I ))
1311, 12bitr4i 278 . . . . 5 (𝑋((t+‘𝑅) ∪ I )𝑧𝑧 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}))
1413imbi2i 336 . . . 4 ((𝑦𝑅𝑧𝑋((t+‘𝑅) ∪ I )𝑧) ↔ (𝑦𝑅𝑧𝑧 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})))
156, 10, 143imtr3i 291 . . 3 (𝑦 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) → (𝑦𝑅𝑧𝑧 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})))
1615alrimiv 1922 . 2 (𝑦 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) → ∀𝑧(𝑦𝑅𝑧𝑧 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})))
171, 16mpg 1791 1 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wcel 2098  Vcvv 3468  cun 3941  {csn 4623  cop 4629   class class class wbr 5141   I cid 5566  cima 5672  cfv 6537  t+ctcl 14938   hereditary whe 43099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-frege1 43117  ax-frege2 43118  ax-frege8 43136  ax-frege28 43157  ax-frege31 43161  ax-frege41 43172  ax-frege52a 43184  ax-frege52c 43215  ax-frege58b 43228
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-seq 13973  df-trcl 14940  df-relexp 14973  df-he 43100
This theorem is referenced by:  frege110  43300
  Copyright terms: Public domain W3C validator