Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege131 Structured version   Visualization version   GIF version

Theorem frege131 44018
Description: If the procedure 𝑅 is single-valued, then the property of belonging to the 𝑅-sequence beginning with 𝑀 or preceeding 𝑀 in the 𝑅-sequence is hereditary in the 𝑅-sequence. Proposition 131 of [Frege1879] p. 85. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege130.m 𝑀𝑈
frege130.r 𝑅𝑉
Assertion
Ref Expression
frege131 (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))

Proof of Theorem frege131
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frege75 43962 . 2 (∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))
2 elun 4128 . . . . . . 7 (𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
3 df-or 848 . . . . . . 7 ((𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
4 frege130.m . . . . . . . . . . . 12 𝑀𝑈
54elexi 3482 . . . . . . . . . . 11 𝑀 ∈ V
6 vex 3463 . . . . . . . . . . 11 𝑏 ∈ V
75, 6elimasn 6077 . . . . . . . . . 10 (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑏⟩ ∈ (t+‘𝑅))
8 df-br 5120 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑏 ↔ ⟨𝑀, 𝑏⟩ ∈ (t+‘𝑅))
95, 6brcnv 5862 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑀)
107, 8, 93bitr2i 299 . . . . . . . . 9 (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑏(t+‘𝑅)𝑀)
1110notbii 320 . . . . . . . 8 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑏(t+‘𝑅)𝑀)
125, 6elimasn 6077 . . . . . . . . 9 (𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑏⟩ ∈ ((t+‘𝑅) ∪ I ))
13 df-br 5120 . . . . . . . . 9 (𝑀((t+‘𝑅) ∪ I )𝑏 ↔ ⟨𝑀, 𝑏⟩ ∈ ((t+‘𝑅) ∪ I ))
1412, 13bitr4i 278 . . . . . . . 8 (𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑏)
1511, 14imbi12i 350 . . . . . . 7 ((¬ 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏))
162, 3, 153bitri 297 . . . . . 6 (𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏))
17 elun 4128 . . . . . . . . 9 (𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
18 df-or 848 . . . . . . . . 9 ((𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
19 vex 3463 . . . . . . . . . . . . 13 𝑎 ∈ V
205, 19elimasn 6077 . . . . . . . . . . . 12 (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑎⟩ ∈ (t+‘𝑅))
21 df-br 5120 . . . . . . . . . . . 12 (𝑀(t+‘𝑅)𝑎 ↔ ⟨𝑀, 𝑎⟩ ∈ (t+‘𝑅))
225, 19brcnv 5862 . . . . . . . . . . . 12 (𝑀(t+‘𝑅)𝑎𝑎(t+‘𝑅)𝑀)
2320, 21, 223bitr2i 299 . . . . . . . . . . 11 (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑎(t+‘𝑅)𝑀)
2423notbii 320 . . . . . . . . . 10 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑎(t+‘𝑅)𝑀)
255, 19elimasn 6077 . . . . . . . . . . 11 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
26 df-br 5120 . . . . . . . . . . 11 (𝑀((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑀, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
2725, 26bitr4i 278 . . . . . . . . . 10 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑎)
2824, 27imbi12i 350 . . . . . . . . 9 ((¬ 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))
2917, 18, 283bitri 297 . . . . . . . 8 (𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))
3029imbi2i 336 . . . . . . 7 ((𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎)))
3130albii 1819 . . . . . 6 (∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎)))
3216, 31imbi12i 350 . . . . 5 ((𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ ((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))))
3332albii 1819 . . . 4 (∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ ∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))))
3433imbi1i 349 . . 3 ((∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
35 frege130.r . . . 4 𝑅𝑉
364, 35frege130 44017 . . 3 ((∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
3734, 36sylbi 217 . 2 ((∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
381, 37ax-mp 5 1 (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  wal 1538  wcel 2108  cun 3924  {csn 4601  cop 4607   class class class wbr 5119   I cid 5547  ccnv 5653  cima 5657  Fun wfun 6525  cfv 6531  t+ctcl 15004   hereditary whe 43796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-frege1 43814  ax-frege2 43815  ax-frege8 43833  ax-frege28 43854  ax-frege31 43858  ax-frege41 43869  ax-frege52a 43881  ax-frege52c 43912  ax-frege58b 43925
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-trcl 15006  df-relexp 15039  df-he 43797
This theorem is referenced by:  frege132  44019
  Copyright terms: Public domain W3C validator