Step | Hyp | Ref
| Expression |
1 | | frege75 41546 |
. 2
⊢
(∀𝑏(𝑏 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎 → 𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) |
2 | | elun 4083 |
. . . . . . 7
⊢ (𝑏 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑏 ∈ (◡(t+‘𝑅) “ {𝑀}) ∨ 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}))) |
3 | | df-or 845 |
. . . . . . 7
⊢ ((𝑏 ∈ (◡(t+‘𝑅) “ {𝑀}) ∨ 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏 ∈ (◡(t+‘𝑅) “ {𝑀}) → 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}))) |
4 | | frege130.m |
. . . . . . . . . . . 12
⊢ 𝑀 ∈ 𝑈 |
5 | 4 | elexi 3451 |
. . . . . . . . . . 11
⊢ 𝑀 ∈ V |
6 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
7 | 5, 6 | elimasn 5997 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ 〈𝑀, 𝑏〉 ∈ ◡(t+‘𝑅)) |
8 | | df-br 5075 |
. . . . . . . . . 10
⊢ (𝑀◡(t+‘𝑅)𝑏 ↔ 〈𝑀, 𝑏〉 ∈ ◡(t+‘𝑅)) |
9 | 5, 6 | brcnv 5791 |
. . . . . . . . . 10
⊢ (𝑀◡(t+‘𝑅)𝑏 ↔ 𝑏(t+‘𝑅)𝑀) |
10 | 7, 8, 9 | 3bitr2i 299 |
. . . . . . . . 9
⊢ (𝑏 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ 𝑏(t+‘𝑅)𝑀) |
11 | 10 | notbii 320 |
. . . . . . . 8
⊢ (¬
𝑏 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑏(t+‘𝑅)𝑀) |
12 | 5, 6 | elimasn 5997 |
. . . . . . . . 9
⊢ (𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 〈𝑀, 𝑏〉 ∈ ((t+‘𝑅) ∪ I )) |
13 | | df-br 5075 |
. . . . . . . . 9
⊢ (𝑀((t+‘𝑅) ∪ I )𝑏 ↔ 〈𝑀, 𝑏〉 ∈ ((t+‘𝑅) ∪ I )) |
14 | 12, 13 | bitr4i 277 |
. . . . . . . 8
⊢ (𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑏) |
15 | 11, 14 | imbi12i 351 |
. . . . . . 7
⊢ ((¬
𝑏 ∈ (◡(t+‘𝑅) “ {𝑀}) → 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏)) |
16 | 2, 3, 15 | 3bitri 297 |
. . . . . 6
⊢ (𝑏 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏)) |
17 | | elun 4083 |
. . . . . . . . 9
⊢ (𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑎 ∈ (◡(t+‘𝑅) “ {𝑀}) ∨ 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}))) |
18 | | df-or 845 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (◡(t+‘𝑅) “ {𝑀}) ∨ 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎 ∈ (◡(t+‘𝑅) “ {𝑀}) → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}))) |
19 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑎 ∈ V |
20 | 5, 19 | elimasn 5997 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ 〈𝑀, 𝑎〉 ∈ ◡(t+‘𝑅)) |
21 | | df-br 5075 |
. . . . . . . . . . . 12
⊢ (𝑀◡(t+‘𝑅)𝑎 ↔ 〈𝑀, 𝑎〉 ∈ ◡(t+‘𝑅)) |
22 | 5, 19 | brcnv 5791 |
. . . . . . . . . . . 12
⊢ (𝑀◡(t+‘𝑅)𝑎 ↔ 𝑎(t+‘𝑅)𝑀) |
23 | 20, 21, 22 | 3bitr2i 299 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ 𝑎(t+‘𝑅)𝑀) |
24 | 23 | notbii 320 |
. . . . . . . . . 10
⊢ (¬
𝑎 ∈ (◡(t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑎(t+‘𝑅)𝑀) |
25 | 5, 19 | elimasn 5997 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 〈𝑀, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) |
26 | | df-br 5075 |
. . . . . . . . . . 11
⊢ (𝑀((t+‘𝑅) ∪ I )𝑎 ↔ 〈𝑀, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) |
27 | 25, 26 | bitr4i 277 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑎) |
28 | 24, 27 | imbi12i 351 |
. . . . . . . . 9
⊢ ((¬
𝑎 ∈ (◡(t+‘𝑅) “ {𝑀}) → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎)) |
29 | 17, 18, 28 | 3bitri 297 |
. . . . . . . 8
⊢ (𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎)) |
30 | 29 | imbi2i 336 |
. . . . . . 7
⊢ ((𝑏𝑅𝑎 → 𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) |
31 | 30 | albii 1822 |
. . . . . 6
⊢
(∀𝑎(𝑏𝑅𝑎 → 𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) |
32 | 16, 31 | imbi12i 351 |
. . . . 5
⊢ ((𝑏 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎 → 𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ ((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎)))) |
33 | 32 | albii 1822 |
. . . 4
⊢
(∀𝑏(𝑏 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎 → 𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ ∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎)))) |
34 | 33 | imbi1i 350 |
. . 3
⊢
((∀𝑏(𝑏 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎 → 𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) |
35 | | frege130.r |
. . . 4
⊢ 𝑅 ∈ 𝑉 |
36 | 4, 35 | frege130 41601 |
. . 3
⊢
((∀𝑏((¬
𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) |
37 | 34, 36 | sylbi 216 |
. 2
⊢
((∀𝑏(𝑏 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎 → 𝑎 ∈ ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) |
38 | 1, 37 | ax-mp 5 |
1
⊢ (Fun
◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) |