Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege131 Structured version   Visualization version   GIF version

Theorem frege131 43956
Description: If the procedure 𝑅 is single-valued, then the property of belonging to the 𝑅-sequence beginning with 𝑀 or preceeding 𝑀 in the 𝑅-sequence is hereditary in the 𝑅-sequence. Proposition 131 of [Frege1879] p. 85. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege130.m 𝑀𝑈
frege130.r 𝑅𝑉
Assertion
Ref Expression
frege131 (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))

Proof of Theorem frege131
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frege75 43900 . 2 (∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))
2 elun 4176 . . . . . . 7 (𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
3 df-or 847 . . . . . . 7 ((𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
4 frege130.m . . . . . . . . . . . 12 𝑀𝑈
54elexi 3511 . . . . . . . . . . 11 𝑀 ∈ V
6 vex 3492 . . . . . . . . . . 11 𝑏 ∈ V
75, 6elimasn 6119 . . . . . . . . . 10 (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑏⟩ ∈ (t+‘𝑅))
8 df-br 5167 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑏 ↔ ⟨𝑀, 𝑏⟩ ∈ (t+‘𝑅))
95, 6brcnv 5907 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑀)
107, 8, 93bitr2i 299 . . . . . . . . 9 (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑏(t+‘𝑅)𝑀)
1110notbii 320 . . . . . . . 8 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑏(t+‘𝑅)𝑀)
125, 6elimasn 6119 . . . . . . . . 9 (𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑏⟩ ∈ ((t+‘𝑅) ∪ I ))
13 df-br 5167 . . . . . . . . 9 (𝑀((t+‘𝑅) ∪ I )𝑏 ↔ ⟨𝑀, 𝑏⟩ ∈ ((t+‘𝑅) ∪ I ))
1412, 13bitr4i 278 . . . . . . . 8 (𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑏)
1511, 14imbi12i 350 . . . . . . 7 ((¬ 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏))
162, 3, 153bitri 297 . . . . . 6 (𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏))
17 elun 4176 . . . . . . . . 9 (𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
18 df-or 847 . . . . . . . . 9 ((𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
19 vex 3492 . . . . . . . . . . . . 13 𝑎 ∈ V
205, 19elimasn 6119 . . . . . . . . . . . 12 (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑎⟩ ∈ (t+‘𝑅))
21 df-br 5167 . . . . . . . . . . . 12 (𝑀(t+‘𝑅)𝑎 ↔ ⟨𝑀, 𝑎⟩ ∈ (t+‘𝑅))
225, 19brcnv 5907 . . . . . . . . . . . 12 (𝑀(t+‘𝑅)𝑎𝑎(t+‘𝑅)𝑀)
2320, 21, 223bitr2i 299 . . . . . . . . . . 11 (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑎(t+‘𝑅)𝑀)
2423notbii 320 . . . . . . . . . 10 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑎(t+‘𝑅)𝑀)
255, 19elimasn 6119 . . . . . . . . . . 11 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
26 df-br 5167 . . . . . . . . . . 11 (𝑀((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑀, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
2725, 26bitr4i 278 . . . . . . . . . 10 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑎)
2824, 27imbi12i 350 . . . . . . . . 9 ((¬ 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))
2917, 18, 283bitri 297 . . . . . . . 8 (𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))
3029imbi2i 336 . . . . . . 7 ((𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎)))
3130albii 1817 . . . . . 6 (∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎)))
3216, 31imbi12i 350 . . . . 5 ((𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ ((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))))
3332albii 1817 . . . 4 (∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ ∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))))
3433imbi1i 349 . . 3 ((∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
35 frege130.r . . . 4 𝑅𝑉
364, 35frege130 43955 . . 3 ((∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
3734, 36sylbi 217 . 2 ((∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
381, 37ax-mp 5 1 (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846  wal 1535  wcel 2108  cun 3974  {csn 4648  cop 4654   class class class wbr 5166   I cid 5592  ccnv 5699  cima 5703  Fun wfun 6567  cfv 6573  t+ctcl 15034   hereditary whe 43734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-frege1 43752  ax-frege2 43753  ax-frege8 43771  ax-frege28 43792  ax-frege31 43796  ax-frege41 43807  ax-frege52a 43819  ax-frege52c 43850  ax-frege58b 43863
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-trcl 15036  df-relexp 15069  df-he 43735
This theorem is referenced by:  frege132  43957
  Copyright terms: Public domain W3C validator