Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege131 Structured version   Visualization version   GIF version

Theorem frege131 41068
Description: If the procedure 𝑅 is single-valued, then the property of belonging to the 𝑅-sequence begining with 𝑀 or preceeding 𝑀 in the 𝑅-sequence is hereditary in the 𝑅-sequence. Proposition 131 of [Frege1879] p. 85. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege130.m 𝑀𝑈
frege130.r 𝑅𝑉
Assertion
Ref Expression
frege131 (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))

Proof of Theorem frege131
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frege75 41012 . 2 (∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))
2 elun 4054 . . . . . . 7 (𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
3 df-or 845 . . . . . . 7 ((𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
4 frege130.m . . . . . . . . . . . 12 𝑀𝑈
54elexi 3429 . . . . . . . . . . 11 𝑀 ∈ V
6 vex 3413 . . . . . . . . . . 11 𝑏 ∈ V
75, 6elimasn 5926 . . . . . . . . . 10 (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑏⟩ ∈ (t+‘𝑅))
8 df-br 5033 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑏 ↔ ⟨𝑀, 𝑏⟩ ∈ (t+‘𝑅))
95, 6brcnv 5722 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑀)
107, 8, 93bitr2i 302 . . . . . . . . 9 (𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑏(t+‘𝑅)𝑀)
1110notbii 323 . . . . . . . 8 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑏(t+‘𝑅)𝑀)
125, 6elimasn 5926 . . . . . . . . 9 (𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑏⟩ ∈ ((t+‘𝑅) ∪ I ))
13 df-br 5033 . . . . . . . . 9 (𝑀((t+‘𝑅) ∪ I )𝑏 ↔ ⟨𝑀, 𝑏⟩ ∈ ((t+‘𝑅) ∪ I ))
1412, 13bitr4i 281 . . . . . . . 8 (𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑏)
1511, 14imbi12i 354 . . . . . . 7 ((¬ 𝑏 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑏 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏))
162, 3, 153bitri 300 . . . . . 6 (𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏))
17 elun 4054 . . . . . . . . 9 (𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
18 df-or 845 . . . . . . . . 9 ((𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
19 vex 3413 . . . . . . . . . . . . 13 𝑎 ∈ V
205, 19elimasn 5926 . . . . . . . . . . . 12 (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑎⟩ ∈ (t+‘𝑅))
21 df-br 5033 . . . . . . . . . . . 12 (𝑀(t+‘𝑅)𝑎 ↔ ⟨𝑀, 𝑎⟩ ∈ (t+‘𝑅))
225, 19brcnv 5722 . . . . . . . . . . . 12 (𝑀(t+‘𝑅)𝑎𝑎(t+‘𝑅)𝑀)
2320, 21, 223bitr2i 302 . . . . . . . . . . 11 (𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑎(t+‘𝑅)𝑀)
2423notbii 323 . . . . . . . . . 10 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑎(t+‘𝑅)𝑀)
255, 19elimasn 5926 . . . . . . . . . . 11 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
26 df-br 5033 . . . . . . . . . . 11 (𝑀((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑀, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
2725, 26bitr4i 281 . . . . . . . . . 10 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑎)
2824, 27imbi12i 354 . . . . . . . . 9 ((¬ 𝑎 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))
2917, 18, 283bitri 300 . . . . . . . 8 (𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))
3029imbi2i 339 . . . . . . 7 ((𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎)))
3130albii 1821 . . . . . 6 (∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎)))
3216, 31imbi12i 354 . . . . 5 ((𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ ((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))))
3332albii 1821 . . . 4 (∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ ∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))))
3433imbi1i 353 . . 3 ((∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
35 frege130.r . . . 4 𝑅𝑉
364, 35frege130 41067 . . 3 ((∀𝑏((¬ 𝑏(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
3734, 36sylbi 220 . 2 ((∀𝑏(𝑏 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → ∀𝑎(𝑏𝑅𝑎𝑎 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) → 𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))
381, 37ax-mp 5 1 (Fun 𝑅𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844  wal 1536  wcel 2111  cun 3856  {csn 4522  cop 4528   class class class wbr 5032   I cid 5429  ccnv 5523  cima 5527  Fun wfun 6329  cfv 6335  t+ctcl 14392   hereditary whe 40846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-frege1 40864  ax-frege2 40865  ax-frege8 40883  ax-frege28 40904  ax-frege31 40908  ax-frege41 40919  ax-frege52a 40931  ax-frege52c 40962  ax-frege58b 40975
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-seq 13419  df-trcl 14394  df-relexp 14427  df-he 40847
This theorem is referenced by:  frege132  41069
  Copyright terms: Public domain W3C validator