Step | Hyp | Ref
| Expression |
1 | | inss1 4159 |
. . . . . . . 8
⊢ (𝐵 ∩ (1[,)+∞)) ⊆
𝐵 |
2 | | resmpt 5934 |
. . . . . . . 8
⊢ ((𝐵 ∩ (1[,)+∞)) ⊆
𝐵 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆)) |
3 | 1, 2 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆)) |
4 | | 0xr 10953 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
5 | | 0lt1 11427 |
. . . . . . . . . . 11
⊢ 0 <
1 |
6 | | df-ioo 13012 |
. . . . . . . . . . . 12
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
7 | | df-ico 13014 |
. . . . . . . . . . . 12
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
8 | | xrltletr 12820 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)
→ ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤)) |
9 | 6, 7, 8 | ixxss1 13026 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆
(0(,)+∞)) |
10 | 4, 5, 9 | mp2an 688 |
. . . . . . . . . 10
⊢
(1[,)+∞) ⊆ (0(,)+∞) |
11 | | ioorp 13086 |
. . . . . . . . . 10
⊢
(0(,)+∞) = ℝ+ |
12 | 10, 11 | sseqtri 3953 |
. . . . . . . . 9
⊢
(1[,)+∞) ⊆ ℝ+ |
13 | | sslin 4165 |
. . . . . . . . 9
⊢
((1[,)+∞) ⊆ ℝ+ → (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩
ℝ+)) |
14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐵 ∩ (1[,)+∞)) ⊆
(𝐵 ∩
ℝ+) |
15 | | resmpt 5934 |
. . . . . . . 8
⊢ ((𝐵 ∩ (1[,)+∞)) ⊆
(𝐵 ∩
ℝ+) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆)) |
16 | 14, 15 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆)) |
17 | 3, 16 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞)))) |
18 | | resres 5893 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) |
19 | | resres 5893 |
. . . . . 6
⊢ (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) |
20 | 17, 18, 19 | 3eqtr4g 2804 |
. . . . 5
⊢ (𝜑 → (((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞))) |
21 | | rlimcnp2.r |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) |
22 | 21 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝑆):𝐵⟶ℂ) |
23 | 22 | ffnd 6585 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝑆) Fn 𝐵) |
24 | | fnresdm 6535 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ↦ 𝑆) Fn 𝐵 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
26 | 25 | reseq1d 5879 |
. . . . 5
⊢ (𝜑 → (((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (1[,)+∞))) |
27 | | elinel1 4125 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∩ ℝ+) → 𝑦 ∈ 𝐵) |
28 | 27, 21 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑆 ∈
ℂ) |
29 | 28 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩
ℝ+)⟶ℂ) |
30 | | frel 6589 |
. . . . . . . 8
⊢ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ
→ Rel (𝑦 ∈ (𝐵 ∩ ℝ+)
↦ 𝑆)) |
31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)) |
32 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) |
33 | 32, 28 | dmmptd 6562 |
. . . . . . . 8
⊢ (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝐵 ∩
ℝ+)) |
34 | | inss1 4159 |
. . . . . . . 8
⊢ (𝐵 ∩ ℝ+)
⊆ 𝐵 |
35 | 33, 34 | eqsstrdi 3971 |
. . . . . . 7
⊢ (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵) |
36 | | relssres 5921 |
. . . . . . 7
⊢ ((Rel
(𝑦 ∈ (𝐵 ∩ ℝ+)
↦ 𝑆) ∧ dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)) |
37 | 31, 35, 36 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)) |
38 | 37 | reseq1d 5879 |
. . . . 5
⊢ (𝜑 → (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾
(1[,)+∞))) |
39 | 20, 26, 38 | 3eqtr3d 2786 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾
(1[,)+∞))) |
40 | 39 | breq1d 5080 |
. . 3
⊢ (𝜑 → (((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (1[,)+∞))
⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞))
⇝𝑟 𝐶)) |
41 | | rlimcnp2.b |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
42 | | 1red 10907 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
43 | 22, 41, 42 | rlimresb 15202 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (1[,)+∞))
⇝𝑟 𝐶)) |
44 | 34, 41 | sstrid 3928 |
. . . 4
⊢ (𝜑 → (𝐵 ∩ ℝ+) ⊆
ℝ) |
45 | 29, 44, 42 | rlimresb 15202 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟
𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞))
⇝𝑟 𝐶)) |
46 | 40, 43, 45 | 3bitr4d 310 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟
𝐶)) |
47 | | inss2 4160 |
. . . . . . . . . . 11
⊢ (𝐵 ∩ ℝ+)
⊆ ℝ+ |
48 | 47 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∩ ℝ+) ⊆
ℝ+) |
49 | 48 | sselda 3917 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑦 ∈
ℝ+) |
50 | 49 | rpreccld 12711 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 /
𝑦) ∈
ℝ+) |
51 | 50 | rpne0d 12706 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 /
𝑦) ≠ 0) |
52 | 51 | neneqd 2947 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → ¬ (1
/ 𝑦) = 0) |
53 | 52 | iffalsed 4467 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅) = ⦋(1 / 𝑦) / 𝑥⦌𝑅) |
54 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦))) |
55 | | rpcnne0 12677 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ+
→ (𝑦 ∈ ℂ
∧ 𝑦 ≠
0)) |
56 | | recrec 11602 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (1 / 𝑦)) = 𝑦) |
57 | 49, 55, 56 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / (1
/ 𝑦)) = 𝑦) |
58 | 54, 57 | sylan9eqr 2801 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → (1 / 𝑥) = 𝑦) |
59 | 58 | eqcomd 2744 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑦 = (1 / 𝑥)) |
60 | | rlimcnp2.s |
. . . . . . . 8
⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) |
61 | 59, 60 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑆 = 𝑅) |
62 | 61 | eqcomd 2744 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑅 = 𝑆) |
63 | 50, 62 | csbied 3866 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) →
⦋(1 / 𝑦) /
𝑥⦌𝑅 = 𝑆) |
64 | 53, 63 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅) = 𝑆) |
65 | 64 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)) |
66 | 65 | breq1d 5080 |
. 2
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟
𝐶)) |
67 | | rlimcnp2.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) |
68 | | rlimcnp2.0 |
. . . 4
⊢ (𝜑 → 0 ∈ 𝐴) |
69 | | rlimcnp2.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℂ) |
70 | 69 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑤 = 0) → 𝐶 ∈ ℂ) |
71 | 67 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ (0[,)+∞)) |
72 | | 0re 10908 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
73 | | pnfxr 10960 |
. . . . . . . . . . . . 13
⊢ +∞
∈ ℝ* |
74 | | elico2 13072 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑤 ∈ (0[,)+∞) ↔
(𝑤 ∈ ℝ ∧ 0
≤ 𝑤 ∧ 𝑤 <
+∞))) |
75 | 72, 73, 74 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (0[,)+∞) ↔
(𝑤 ∈ ℝ ∧ 0
≤ 𝑤 ∧ 𝑤 <
+∞)) |
76 | 71, 75 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 < +∞)) |
77 | 76 | simp1d 1140 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
78 | 77 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ) |
79 | 76 | simp2d 1141 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 0 ≤ 𝑤) |
80 | | leloe 10992 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ 𝑤
∈ ℝ) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤))) |
81 | 72, 77, 80 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤))) |
82 | 79, 81 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (0 < 𝑤 ∨ 0 = 𝑤)) |
83 | 82 | ord 860 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (¬ 0 < 𝑤 → 0 = 𝑤)) |
84 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢ (0 =
𝑤 ↔ 𝑤 = 0) |
85 | 83, 84 | syl6ib 250 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (¬ 0 < 𝑤 → 𝑤 = 0)) |
86 | 85 | con1d 145 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (¬ 𝑤 = 0 → 0 < 𝑤)) |
87 | 86 | imp 406 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 0 < 𝑤) |
88 | 78, 87 | elrpd 12698 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ+) |
89 | | rpcnne0 12677 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ+
→ (𝑤 ∈ ℂ
∧ 𝑤 ≠
0)) |
90 | | recrec 11602 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / (1 / 𝑤)) = 𝑤) |
91 | 89, 90 | syl 17 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ+
→ (1 / (1 / 𝑤)) =
𝑤) |
92 | 88, 91 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) = 𝑤) |
93 | 92 | csbeq1d 3832 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → ⦋(1 / (1 / 𝑤)) / 𝑥⦌𝑅 = ⦋𝑤 / 𝑥⦌𝑅) |
94 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑦 = (1 / 𝑤) → (1 / 𝑦) = (1 / (1 / 𝑤))) |
95 | 94 | csbeq1d 3832 |
. . . . . . . 8
⊢ (𝑦 = (1 / 𝑤) → ⦋(1 / 𝑦) / 𝑥⦌𝑅 = ⦋(1 / (1 / 𝑤)) / 𝑥⦌𝑅) |
96 | 95 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑦 = (1 / 𝑤) → (⦋(1 / 𝑦) / 𝑥⦌𝑅 ∈ ℂ ↔ ⦋(1 /
(1 / 𝑤)) / 𝑥⦌𝑅 ∈ ℂ)) |
97 | 63, 28 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) →
⦋(1 / 𝑦) /
𝑥⦌𝑅 ∈
ℂ) |
98 | 97 | ralrimiva 3107 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ (𝐵 ∩ ℝ+)⦋(1
/ 𝑦) / 𝑥⦌𝑅 ∈ ℂ) |
99 | 98 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → ∀𝑦 ∈ (𝐵 ∩ ℝ+)⦋(1
/ 𝑦) / 𝑥⦌𝑅 ∈ ℂ) |
100 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ 𝐴) |
101 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 𝜑) |
102 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (1 / 𝑤) → (𝑦 ∈ 𝐵 ↔ (1 / 𝑤) ∈ 𝐵)) |
103 | 94 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (1 / 𝑤) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)) |
104 | 102, 103 | bibi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑦 = (1 / 𝑤) → ((𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴) ↔ ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))) |
105 | | rlimcnp2.d |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) |
106 | 105 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) |
107 | 106 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
∀𝑦 ∈
ℝ+ (𝑦
∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) |
108 | | rpreccl 12685 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℝ+
→ (1 / 𝑤) ∈
ℝ+) |
109 | 108 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (1 /
𝑤) ∈
ℝ+) |
110 | 104, 107,
109 | rspcdva 3554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → ((1 /
𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)) |
111 | 91 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (1 / (1 /
𝑤)) = 𝑤) |
112 | 111 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → ((1 / (1
/ 𝑤)) ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
113 | 110, 112 | bitr2d 279 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ 𝐴 ↔ (1 / 𝑤) ∈ 𝐵)) |
114 | 101, 88, 113 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (𝑤 ∈ 𝐴 ↔ (1 / 𝑤) ∈ 𝐵)) |
115 | 100, 114 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ 𝐵) |
116 | 88 | rpreccld 12711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈
ℝ+) |
117 | 115, 116 | elind 4124 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ (𝐵 ∩
ℝ+)) |
118 | 96, 99, 117 | rspcdva 3554 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → ⦋(1 / (1 / 𝑤)) / 𝑥⦌𝑅 ∈ ℂ) |
119 | 93, 118 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → ⦋𝑤 / 𝑥⦌𝑅 ∈ ℂ) |
120 | 70, 119 | ifclda 4491 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅) ∈ ℂ) |
121 | 109 | biantrud 531 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → ((1 /
𝑤) ∈ 𝐵 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈
ℝ+))) |
122 | 113, 121 | bitrd 278 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ 𝐴 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈
ℝ+))) |
123 | | elin 3899 |
. . . . 5
⊢ ((1 /
𝑤) ∈ (𝐵 ∩ ℝ+)
↔ ((1 / 𝑤) ∈
𝐵 ∧ (1 / 𝑤) ∈
ℝ+)) |
124 | 122, 123 | bitr4di 288 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ 𝐴 ↔ (1 / 𝑤) ∈ (𝐵 ∩
ℝ+))) |
125 | | iftrue 4462 |
. . . 4
⊢ (𝑤 = 0 → if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅) = 𝐶) |
126 | | eqeq1 2742 |
. . . . 5
⊢ (𝑤 = (1 / 𝑦) → (𝑤 = 0 ↔ (1 / 𝑦) = 0)) |
127 | | csbeq1 3831 |
. . . . 5
⊢ (𝑤 = (1 / 𝑦) → ⦋𝑤 / 𝑥⦌𝑅 = ⦋(1 / 𝑦) / 𝑥⦌𝑅) |
128 | 126, 127 | ifbieq2d 4482 |
. . . 4
⊢ (𝑤 = (1 / 𝑦) → if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅) = if((1 / 𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) |
129 | | rlimcnp2.j |
. . . 4
⊢ 𝐽 =
(TopOpen‘ℂfld) |
130 | | rlimcnp2.k |
. . . 4
⊢ 𝐾 = (𝐽 ↾t 𝐴) |
131 | 67, 68, 48, 120, 124, 125, 128, 129, 130 | rlimcnp 26020 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) ⇝𝑟 𝐶 ↔ (𝑤 ∈ 𝐴 ↦ if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
132 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑤if(𝑥 = 0, 𝐶, 𝑅) |
133 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑥 𝑤 = 0 |
134 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥𝐶 |
135 | | nfcsb1v 3853 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑅 |
136 | 133, 134,
135 | nfif 4486 |
. . . . 5
⊢
Ⅎ𝑥if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅) |
137 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥 = 0 ↔ 𝑤 = 0)) |
138 | | csbeq1a 3842 |
. . . . . 6
⊢ (𝑥 = 𝑤 → 𝑅 = ⦋𝑤 / 𝑥⦌𝑅) |
139 | 137, 138 | ifbieq2d 4482 |
. . . . 5
⊢ (𝑥 = 𝑤 → if(𝑥 = 0, 𝐶, 𝑅) = if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅)) |
140 | 132, 136,
139 | cbvmpt 5181 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) = (𝑤 ∈ 𝐴 ↦ if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅)) |
141 | 140 | eleq1i 2829 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑤 ∈ 𝐴 ↦ if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)) |
142 | 131, 141 | bitr4di 288 |
. 2
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
143 | 46, 66, 142 | 3bitr2d 306 |
1
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |