MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp2 Structured version   Visualization version   GIF version

Theorem rlimcnp2 26116
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp2.a (𝜑𝐴 ⊆ (0[,)+∞))
rlimcnp2.0 (𝜑 → 0 ∈ 𝐴)
rlimcnp2.b (𝜑𝐵 ⊆ ℝ)
rlimcnp2.c (𝜑𝐶 ∈ ℂ)
rlimcnp2.r ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
rlimcnp2.d ((𝜑𝑦 ∈ ℝ+) → (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
rlimcnp2.s (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
rlimcnp2.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp2.k 𝐾 = (𝐽t 𝐴)
Assertion
Ref Expression
rlimcnp2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4162 . . . . . . . 8 (𝐵 ∩ (1[,)+∞)) ⊆ 𝐵
2 resmpt 5945 . . . . . . . 8 ((𝐵 ∩ (1[,)+∞)) ⊆ 𝐵 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
31, 2mp1i 13 . . . . . . 7 (𝜑 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
4 0xr 11022 . . . . . . . . . . 11 0 ∈ ℝ*
5 0lt1 11497 . . . . . . . . . . 11 0 < 1
6 df-ioo 13083 . . . . . . . . . . . 12 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
7 df-ico 13085 . . . . . . . . . . . 12 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
8 xrltletr 12891 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
96, 7, 8ixxss1 13097 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
104, 5, 9mp2an 689 . . . . . . . . . 10 (1[,)+∞) ⊆ (0(,)+∞)
11 ioorp 13157 . . . . . . . . . 10 (0(,)+∞) = ℝ+
1210, 11sseqtri 3957 . . . . . . . . 9 (1[,)+∞) ⊆ ℝ+
13 sslin 4168 . . . . . . . . 9 ((1[,)+∞) ⊆ ℝ+ → (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+))
1412, 13ax-mp 5 . . . . . . . 8 (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+)
15 resmpt 5945 . . . . . . . 8 ((𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
1614, 15mp1i 13 . . . . . . 7 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
173, 16eqtr4d 2781 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))))
18 resres 5904 . . . . . 6 (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞)))
19 resres 5904 . . . . . 6 (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞)))
2017, 18, 193eqtr4g 2803 . . . . 5 (𝜑 → (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)))
21 rlimcnp2.r . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
2221fmpttd 6989 . . . . . . . 8 (𝜑 → (𝑦𝐵𝑆):𝐵⟶ℂ)
2322ffnd 6601 . . . . . . 7 (𝜑 → (𝑦𝐵𝑆) Fn 𝐵)
24 fnresdm 6551 . . . . . . 7 ((𝑦𝐵𝑆) Fn 𝐵 → ((𝑦𝐵𝑆) ↾ 𝐵) = (𝑦𝐵𝑆))
2523, 24syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆) ↾ 𝐵) = (𝑦𝐵𝑆))
2625reseq1d 5890 . . . . 5 (𝜑 → (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦𝐵𝑆) ↾ (1[,)+∞)))
27 elinel1 4129 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∩ ℝ+) → 𝑦𝐵)
2827, 21sylan2 593 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑆 ∈ ℂ)
2928fmpttd 6989 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ)
30 frel 6605 . . . . . . . 8 ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3129, 30syl 17 . . . . . . 7 (𝜑 → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
32 eqid 2738 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)
3332, 28dmmptd 6578 . . . . . . . 8 (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝐵 ∩ ℝ+))
34 inss1 4162 . . . . . . . 8 (𝐵 ∩ ℝ+) ⊆ 𝐵
3533, 34eqsstrdi 3975 . . . . . . 7 (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵)
36 relssres 5932 . . . . . . 7 ((Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ∧ dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3731, 35, 36syl2anc 584 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3837reseq1d 5890 . . . . 5 (𝜑 → (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)))
3920, 26, 383eqtr3d 2786 . . . 4 (𝜑 → ((𝑦𝐵𝑆) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)))
4039breq1d 5084 . . 3 (𝜑 → (((𝑦𝐵𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
41 rlimcnp2.b . . . 4 (𝜑𝐵 ⊆ ℝ)
42 1red 10976 . . . 4 (𝜑 → 1 ∈ ℝ)
4322, 41, 42rlimresb 15274 . . 3 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ((𝑦𝐵𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
4434, 41sstrid 3932 . . . 4 (𝜑 → (𝐵 ∩ ℝ+) ⊆ ℝ)
4529, 44, 42rlimresb 15274 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
4640, 43, 453bitr4d 311 . 2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶))
47 inss2 4163 . . . . . . . . . . 11 (𝐵 ∩ ℝ+) ⊆ ℝ+
4847a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ ℝ+) ⊆ ℝ+)
4948sselda 3921 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑦 ∈ ℝ+)
5049rpreccld 12782 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) ∈ ℝ+)
5150rpne0d 12777 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) ≠ 0)
5251neneqd 2948 . . . . . 6 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → ¬ (1 / 𝑦) = 0)
5352iffalsed 4470 . . . . 5 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅) = (1 / 𝑦) / 𝑥𝑅)
54 oveq2 7283 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦)))
55 rpcnne0 12748 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
56 recrec 11672 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (1 / 𝑦)) = 𝑦)
5749, 55, 563syl 18 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / (1 / 𝑦)) = 𝑦)
5854, 57sylan9eqr 2800 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → (1 / 𝑥) = 𝑦)
5958eqcomd 2744 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑦 = (1 / 𝑥))
60 rlimcnp2.s . . . . . . . 8 (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
6159, 60syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑆 = 𝑅)
6261eqcomd 2744 . . . . . 6 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑅 = 𝑆)
6350, 62csbied 3870 . . . . 5 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) / 𝑥𝑅 = 𝑆)
6453, 63eqtrd 2778 . . . 4 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅) = 𝑆)
6564mpteq2dva 5174 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
6665breq1d 5084 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶))
67 rlimcnp2.a . . . 4 (𝜑𝐴 ⊆ (0[,)+∞))
68 rlimcnp2.0 . . . 4 (𝜑 → 0 ∈ 𝐴)
69 rlimcnp2.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
7069ad2antrr 723 . . . . 5 (((𝜑𝑤𝐴) ∧ 𝑤 = 0) → 𝐶 ∈ ℂ)
7167sselda 3921 . . . . . . . . . . . 12 ((𝜑𝑤𝐴) → 𝑤 ∈ (0[,)+∞))
72 0re 10977 . . . . . . . . . . . . 13 0 ∈ ℝ
73 pnfxr 11029 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
74 elico2 13143 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑤 ∈ (0[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞)))
7572, 73, 74mp2an 689 . . . . . . . . . . . 12 (𝑤 ∈ (0[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞))
7671, 75sylib 217 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞))
7776simp1d 1141 . . . . . . . . . 10 ((𝜑𝑤𝐴) → 𝑤 ∈ ℝ)
7877adantr 481 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ)
7976simp2d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐴) → 0 ≤ 𝑤)
80 leloe 11061 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤)))
8172, 77, 80sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐴) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤)))
8279, 81mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴) → (0 < 𝑤 ∨ 0 = 𝑤))
8382ord 861 . . . . . . . . . . . 12 ((𝜑𝑤𝐴) → (¬ 0 < 𝑤 → 0 = 𝑤))
84 eqcom 2745 . . . . . . . . . . . 12 (0 = 𝑤𝑤 = 0)
8583, 84syl6ib 250 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (¬ 0 < 𝑤𝑤 = 0))
8685con1d 145 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (¬ 𝑤 = 0 → 0 < 𝑤))
8786imp 407 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 0 < 𝑤)
8878, 87elrpd 12769 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ+)
89 rpcnne0 12748 . . . . . . . . 9 (𝑤 ∈ ℝ+ → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
90 recrec 11672 . . . . . . . . 9 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / (1 / 𝑤)) = 𝑤)
9189, 90syl 17 . . . . . . . 8 (𝑤 ∈ ℝ+ → (1 / (1 / 𝑤)) = 𝑤)
9288, 91syl 17 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) = 𝑤)
9392csbeq1d 3836 . . . . . 6 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) / 𝑥𝑅 = 𝑤 / 𝑥𝑅)
94 oveq2 7283 . . . . . . . . 9 (𝑦 = (1 / 𝑤) → (1 / 𝑦) = (1 / (1 / 𝑤)))
9594csbeq1d 3836 . . . . . . . 8 (𝑦 = (1 / 𝑤) → (1 / 𝑦) / 𝑥𝑅 = (1 / (1 / 𝑤)) / 𝑥𝑅)
9695eleq1d 2823 . . . . . . 7 (𝑦 = (1 / 𝑤) → ((1 / 𝑦) / 𝑥𝑅 ∈ ℂ ↔ (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ))
9763, 28eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
9897ralrimiva 3103 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
9998ad2antrr 723 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → ∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
100 simplr 766 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤𝐴)
101 simpll 764 . . . . . . . . . 10 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝜑)
102 eleq1 2826 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑤) → (𝑦𝐵 ↔ (1 / 𝑤) ∈ 𝐵))
10394eleq1d 2823 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑤) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))
104102, 103bibi12d 346 . . . . . . . . . . . 12 (𝑦 = (1 / 𝑤) → ((𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴) ↔ ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)))
105 rlimcnp2.d . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
106105ralrimiva 3103 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
107106adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
108 rpreccl 12756 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+ → (1 / 𝑤) ∈ ℝ+)
109108adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → (1 / 𝑤) ∈ ℝ+)
110104, 107, 109rspcdva 3562 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))
11191adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → (1 / (1 / 𝑤)) = 𝑤)
112111eleq1d 2823 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → ((1 / (1 / 𝑤)) ∈ 𝐴𝑤𝐴))
113110, 112bitr2d 279 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ 𝐵))
114101, 88, 113syl2anc 584 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ 𝐵))
115100, 114mpbid 231 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ 𝐵)
11688rpreccld 12782 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ ℝ+)
117115, 116elind 4128 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ (𝐵 ∩ ℝ+))
11896, 99, 117rspcdva 3562 . . . . . 6 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ)
11993, 118eqeltrrd 2840 . . . . 5 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 / 𝑥𝑅 ∈ ℂ)
12070, 119ifclda 4494 . . . 4 ((𝜑𝑤𝐴) → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) ∈ ℂ)
121109biantrud 532 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → ((1 / 𝑤) ∈ 𝐵 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+)))
122113, 121bitrd 278 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+)))
123 elin 3903 . . . . 5 ((1 / 𝑤) ∈ (𝐵 ∩ ℝ+) ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+))
124122, 123bitr4di 289 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ (𝐵 ∩ ℝ+)))
125 iftrue 4465 . . . 4 (𝑤 = 0 → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) = 𝐶)
126 eqeq1 2742 . . . . 5 (𝑤 = (1 / 𝑦) → (𝑤 = 0 ↔ (1 / 𝑦) = 0))
127 csbeq1 3835 . . . . 5 (𝑤 = (1 / 𝑦) → 𝑤 / 𝑥𝑅 = (1 / 𝑦) / 𝑥𝑅)
128126, 127ifbieq2d 4485 . . . 4 (𝑤 = (1 / 𝑦) → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) = if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅))
129 rlimcnp2.j . . . 4 𝐽 = (TopOpen‘ℂfld)
130 rlimcnp2.k . . . 4 𝐾 = (𝐽t 𝐴)
13167, 68, 48, 120, 124, 125, 128, 129, 130rlimcnp 26115 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
132 nfcv 2907 . . . . 5 𝑤if(𝑥 = 0, 𝐶, 𝑅)
133 nfv 1917 . . . . . 6 𝑥 𝑤 = 0
134 nfcv 2907 . . . . . 6 𝑥𝐶
135 nfcsb1v 3857 . . . . . 6 𝑥𝑤 / 𝑥𝑅
136133, 134, 135nfif 4489 . . . . 5 𝑥if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)
137 eqeq1 2742 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = 0 ↔ 𝑤 = 0))
138 csbeq1a 3846 . . . . . 6 (𝑥 = 𝑤𝑅 = 𝑤 / 𝑥𝑅)
139137, 138ifbieq2d 4485 . . . . 5 (𝑥 = 𝑤 → if(𝑥 = 0, 𝐶, 𝑅) = if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅))
140132, 136, 139cbvmpt 5185 . . . 4 (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) = (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅))
141140eleq1i 2829 . . 3 ((𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))
142131, 141bitr4di 289 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
14346, 66, 1423bitr2d 307 1 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  csb 3832  cin 3886  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  Rel wrel 5594   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010   / cdiv 11632  +crp 12730  (,)cioo 13079  [,)cico 13081  𝑟 crli 15194  t crest 17131  TopOpenctopn 17132  fldccnfld 20597   CnP ccnp 22376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-rlim 15198  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-bases 22096  df-cnp 22379
This theorem is referenced by:  rlimcnp3  26117
  Copyright terms: Public domain W3C validator