MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp2 Structured version   Visualization version   GIF version

Theorem rlimcnp2 26874
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp2.a (𝜑𝐴 ⊆ (0[,)+∞))
rlimcnp2.0 (𝜑 → 0 ∈ 𝐴)
rlimcnp2.b (𝜑𝐵 ⊆ ℝ)
rlimcnp2.c (𝜑𝐶 ∈ ℂ)
rlimcnp2.r ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
rlimcnp2.d ((𝜑𝑦 ∈ ℝ+) → (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
rlimcnp2.s (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
rlimcnp2.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp2.k 𝐾 = (𝐽t 𝐴)
Assertion
Ref Expression
rlimcnp2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4188 . . . . . . . 8 (𝐵 ∩ (1[,)+∞)) ⊆ 𝐵
2 resmpt 5988 . . . . . . . 8 ((𝐵 ∩ (1[,)+∞)) ⊆ 𝐵 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
31, 2mp1i 13 . . . . . . 7 (𝜑 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
4 0xr 11162 . . . . . . . . . . 11 0 ∈ ℝ*
5 0lt1 11642 . . . . . . . . . . 11 0 < 1
6 df-ioo 13252 . . . . . . . . . . . 12 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
7 df-ico 13254 . . . . . . . . . . . 12 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
8 xrltletr 13059 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
96, 7, 8ixxss1 13266 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
104, 5, 9mp2an 692 . . . . . . . . . 10 (1[,)+∞) ⊆ (0(,)+∞)
11 ioorp 13328 . . . . . . . . . 10 (0(,)+∞) = ℝ+
1210, 11sseqtri 3984 . . . . . . . . 9 (1[,)+∞) ⊆ ℝ+
13 sslin 4194 . . . . . . . . 9 ((1[,)+∞) ⊆ ℝ+ → (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+))
1412, 13ax-mp 5 . . . . . . . 8 (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+)
15 resmpt 5988 . . . . . . . 8 ((𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
1614, 15mp1i 13 . . . . . . 7 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
173, 16eqtr4d 2767 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))))
18 resres 5943 . . . . . 6 (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞)))
19 resres 5943 . . . . . 6 (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞)))
2017, 18, 193eqtr4g 2789 . . . . 5 (𝜑 → (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)))
21 rlimcnp2.r . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
2221fmpttd 7049 . . . . . . . 8 (𝜑 → (𝑦𝐵𝑆):𝐵⟶ℂ)
2322ffnd 6653 . . . . . . 7 (𝜑 → (𝑦𝐵𝑆) Fn 𝐵)
24 fnresdm 6601 . . . . . . 7 ((𝑦𝐵𝑆) Fn 𝐵 → ((𝑦𝐵𝑆) ↾ 𝐵) = (𝑦𝐵𝑆))
2523, 24syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆) ↾ 𝐵) = (𝑦𝐵𝑆))
2625reseq1d 5929 . . . . 5 (𝜑 → (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦𝐵𝑆) ↾ (1[,)+∞)))
27 elinel1 4152 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∩ ℝ+) → 𝑦𝐵)
2827, 21sylan2 593 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑆 ∈ ℂ)
2928fmpttd 7049 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ)
30 frel 6657 . . . . . . . 8 ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3129, 30syl 17 . . . . . . 7 (𝜑 → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
32 eqid 2729 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)
3332, 28dmmptd 6627 . . . . . . . 8 (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝐵 ∩ ℝ+))
34 inss1 4188 . . . . . . . 8 (𝐵 ∩ ℝ+) ⊆ 𝐵
3533, 34eqsstrdi 3980 . . . . . . 7 (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵)
36 relssres 5973 . . . . . . 7 ((Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ∧ dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3731, 35, 36syl2anc 584 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3837reseq1d 5929 . . . . 5 (𝜑 → (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)))
3920, 26, 383eqtr3d 2772 . . . 4 (𝜑 → ((𝑦𝐵𝑆) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)))
4039breq1d 5102 . . 3 (𝜑 → (((𝑦𝐵𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
41 rlimcnp2.b . . . 4 (𝜑𝐵 ⊆ ℝ)
42 1red 11116 . . . 4 (𝜑 → 1 ∈ ℝ)
4322, 41, 42rlimresb 15472 . . 3 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ((𝑦𝐵𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
4434, 41sstrid 3947 . . . 4 (𝜑 → (𝐵 ∩ ℝ+) ⊆ ℝ)
4529, 44, 42rlimresb 15472 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
4640, 43, 453bitr4d 311 . 2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶))
47 inss2 4189 . . . . . . . . . . 11 (𝐵 ∩ ℝ+) ⊆ ℝ+
4847a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ ℝ+) ⊆ ℝ+)
4948sselda 3935 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑦 ∈ ℝ+)
5049rpreccld 12947 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) ∈ ℝ+)
5150rpne0d 12942 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) ≠ 0)
5251neneqd 2930 . . . . . 6 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → ¬ (1 / 𝑦) = 0)
5352iffalsed 4487 . . . . 5 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅) = (1 / 𝑦) / 𝑥𝑅)
54 oveq2 7357 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦)))
55 rpcnne0 12912 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
56 recrec 11821 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (1 / 𝑦)) = 𝑦)
5749, 55, 563syl 18 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / (1 / 𝑦)) = 𝑦)
5854, 57sylan9eqr 2786 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → (1 / 𝑥) = 𝑦)
5958eqcomd 2735 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑦 = (1 / 𝑥))
60 rlimcnp2.s . . . . . . . 8 (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
6159, 60syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑆 = 𝑅)
6261eqcomd 2735 . . . . . 6 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑅 = 𝑆)
6350, 62csbied 3887 . . . . 5 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) / 𝑥𝑅 = 𝑆)
6453, 63eqtrd 2764 . . . 4 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅) = 𝑆)
6564mpteq2dva 5185 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
6665breq1d 5102 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶))
67 rlimcnp2.a . . . 4 (𝜑𝐴 ⊆ (0[,)+∞))
68 rlimcnp2.0 . . . 4 (𝜑 → 0 ∈ 𝐴)
69 rlimcnp2.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
7069ad2antrr 726 . . . . 5 (((𝜑𝑤𝐴) ∧ 𝑤 = 0) → 𝐶 ∈ ℂ)
7167sselda 3935 . . . . . . . . . . . 12 ((𝜑𝑤𝐴) → 𝑤 ∈ (0[,)+∞))
72 0re 11117 . . . . . . . . . . . . 13 0 ∈ ℝ
73 pnfxr 11169 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
74 elico2 13313 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑤 ∈ (0[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞)))
7572, 73, 74mp2an 692 . . . . . . . . . . . 12 (𝑤 ∈ (0[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞))
7671, 75sylib 218 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞))
7776simp1d 1142 . . . . . . . . . 10 ((𝜑𝑤𝐴) → 𝑤 ∈ ℝ)
7877adantr 480 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ)
7976simp2d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐴) → 0 ≤ 𝑤)
80 leloe 11202 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤)))
8172, 77, 80sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐴) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤)))
8279, 81mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴) → (0 < 𝑤 ∨ 0 = 𝑤))
8382ord 864 . . . . . . . . . . . 12 ((𝜑𝑤𝐴) → (¬ 0 < 𝑤 → 0 = 𝑤))
84 eqcom 2736 . . . . . . . . . . . 12 (0 = 𝑤𝑤 = 0)
8583, 84imbitrdi 251 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (¬ 0 < 𝑤𝑤 = 0))
8685con1d 145 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (¬ 𝑤 = 0 → 0 < 𝑤))
8786imp 406 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 0 < 𝑤)
8878, 87elrpd 12934 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ+)
89 rpcnne0 12912 . . . . . . . . 9 (𝑤 ∈ ℝ+ → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
90 recrec 11821 . . . . . . . . 9 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / (1 / 𝑤)) = 𝑤)
9189, 90syl 17 . . . . . . . 8 (𝑤 ∈ ℝ+ → (1 / (1 / 𝑤)) = 𝑤)
9288, 91syl 17 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) = 𝑤)
9392csbeq1d 3855 . . . . . 6 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) / 𝑥𝑅 = 𝑤 / 𝑥𝑅)
94 oveq2 7357 . . . . . . . . 9 (𝑦 = (1 / 𝑤) → (1 / 𝑦) = (1 / (1 / 𝑤)))
9594csbeq1d 3855 . . . . . . . 8 (𝑦 = (1 / 𝑤) → (1 / 𝑦) / 𝑥𝑅 = (1 / (1 / 𝑤)) / 𝑥𝑅)
9695eleq1d 2813 . . . . . . 7 (𝑦 = (1 / 𝑤) → ((1 / 𝑦) / 𝑥𝑅 ∈ ℂ ↔ (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ))
9763, 28eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
9897ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
9998ad2antrr 726 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → ∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
100 simplr 768 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤𝐴)
101 simpll 766 . . . . . . . . . 10 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝜑)
102 eleq1 2816 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑤) → (𝑦𝐵 ↔ (1 / 𝑤) ∈ 𝐵))
10394eleq1d 2813 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑤) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))
104102, 103bibi12d 345 . . . . . . . . . . . 12 (𝑦 = (1 / 𝑤) → ((𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴) ↔ ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)))
105 rlimcnp2.d . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
106105ralrimiva 3121 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
107106adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
108 rpreccl 12921 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+ → (1 / 𝑤) ∈ ℝ+)
109108adantl 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → (1 / 𝑤) ∈ ℝ+)
110104, 107, 109rspcdva 3578 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))
11191adantl 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → (1 / (1 / 𝑤)) = 𝑤)
112111eleq1d 2813 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → ((1 / (1 / 𝑤)) ∈ 𝐴𝑤𝐴))
113110, 112bitr2d 280 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ 𝐵))
114101, 88, 113syl2anc 584 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ 𝐵))
115100, 114mpbid 232 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ 𝐵)
11688rpreccld 12947 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ ℝ+)
117115, 116elind 4151 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ (𝐵 ∩ ℝ+))
11896, 99, 117rspcdva 3578 . . . . . 6 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ)
11993, 118eqeltrrd 2829 . . . . 5 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 / 𝑥𝑅 ∈ ℂ)
12070, 119ifclda 4512 . . . 4 ((𝜑𝑤𝐴) → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) ∈ ℂ)
121109biantrud 531 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → ((1 / 𝑤) ∈ 𝐵 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+)))
122113, 121bitrd 279 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+)))
123 elin 3919 . . . . 5 ((1 / 𝑤) ∈ (𝐵 ∩ ℝ+) ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+))
124122, 123bitr4di 289 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ (𝐵 ∩ ℝ+)))
125 iftrue 4482 . . . 4 (𝑤 = 0 → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) = 𝐶)
126 eqeq1 2733 . . . . 5 (𝑤 = (1 / 𝑦) → (𝑤 = 0 ↔ (1 / 𝑦) = 0))
127 csbeq1 3854 . . . . 5 (𝑤 = (1 / 𝑦) → 𝑤 / 𝑥𝑅 = (1 / 𝑦) / 𝑥𝑅)
128126, 127ifbieq2d 4503 . . . 4 (𝑤 = (1 / 𝑦) → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) = if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅))
129 rlimcnp2.j . . . 4 𝐽 = (TopOpen‘ℂfld)
130 rlimcnp2.k . . . 4 𝐾 = (𝐽t 𝐴)
13167, 68, 48, 120, 124, 125, 128, 129, 130rlimcnp 26873 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
132 nfcv 2891 . . . . 5 𝑤if(𝑥 = 0, 𝐶, 𝑅)
133 nfv 1914 . . . . . 6 𝑥 𝑤 = 0
134 nfcv 2891 . . . . . 6 𝑥𝐶
135 nfcsb1v 3875 . . . . . 6 𝑥𝑤 / 𝑥𝑅
136133, 134, 135nfif 4507 . . . . 5 𝑥if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)
137 eqeq1 2733 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = 0 ↔ 𝑤 = 0))
138 csbeq1a 3865 . . . . . 6 (𝑥 = 𝑤𝑅 = 𝑤 / 𝑥𝑅)
139137, 138ifbieq2d 4503 . . . . 5 (𝑥 = 𝑤 → if(𝑥 = 0, 𝐶, 𝑅) = if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅))
140132, 136, 139cbvmpt 5194 . . . 4 (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) = (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅))
141140eleq1i 2819 . . 3 ((𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))
142131, 141bitr4di 289 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
14346, 66, 1423bitr2d 307 1 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  csb 3851  cin 3902  wss 3903  ifcif 4476   class class class wbr 5092  cmpt 5173  dom cdm 5619  cres 5621  Rel wrel 5624   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150   / cdiv 11777  +crp 12893  (,)cioo 13248  [,)cico 13250  𝑟 crli 15392  t crest 17324  TopOpenctopn 17325  fldccnfld 21261   CnP ccnp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rlim 15396  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-bases 22831  df-cnp 23113
This theorem is referenced by:  rlimcnp3  26875
  Copyright terms: Public domain W3C validator