| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| lmimcnv | ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | 1, 2 | lmhmf 20973 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 4 | frel 6675 | . . . . . 6 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → Rel 𝐹) |
| 6 | dfrel2 6150 | . . . . 5 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 7 | 5, 6 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ◡◡𝐹 = 𝐹) |
| 8 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 9 | 7, 8 | eqeltrd 2828 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ◡◡𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 10 | 9 | anim1ci 616 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆)) → (◡𝐹 ∈ (𝑇 LMHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 LMHom 𝑇))) |
| 11 | islmim2 21005 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆))) | |
| 12 | islmim2 21005 | . 2 ⊢ (◡𝐹 ∈ (𝑇 LMIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 LMHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 LMHom 𝑇))) | |
| 13 | 10, 11, 12 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ◡ccnv 5630 Rel wrel 5636 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 LMHom clmhm 20958 LMIso clmim 20959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-ghm 19127 df-lmod 20800 df-lmhm 20961 df-lmim 20962 |
| This theorem is referenced by: lmicsym 21011 lbslcic 21783 |
| Copyright terms: Public domain | W3C validator |