MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimcnv Structured version   Visualization version   GIF version

Theorem lmimcnv 19573
Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
lmimcnv (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑇 LMIso 𝑆))

Proof of Theorem lmimcnv
StepHypRef Expression
1 eqid 2771 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2771 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
31, 2lmhmf 19540 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
4 frel 6346 . . . . . 6 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹)
53, 4syl 17 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → Rel 𝐹)
6 dfrel2 5883 . . . . 5 (Rel 𝐹𝐹 = 𝐹)
75, 6sylib 210 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 = 𝐹)
8 id 22 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
97, 8eqeltrd 2859 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
109anim1ci 607 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → (𝐹 ∈ (𝑇 LMHom 𝑆) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)))
11 islmim2 19572 . 2 (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)))
12 islmim2 19572 . 2 (𝐹 ∈ (𝑇 LMIso 𝑆) ↔ (𝐹 ∈ (𝑇 LMHom 𝑆) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)))
1310, 11, 123imtr4i 284 1 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑇 LMIso 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  ccnv 5402  Rel wrel 5408  wf 6181  cfv 6185  (class class class)co 6974  Basecbs 16337   LMHom clmhm 19525   LMIso clmim 19526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-grp 17906  df-ghm 18139  df-lmod 19370  df-lmhm 19528  df-lmim 19529
This theorem is referenced by:  lmicsym  19578  lbslcic  20702
  Copyright terms: Public domain W3C validator