| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| lmimcnv | ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | 1, 2 | lmhmf 21001 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 4 | frel 6721 | . . . . . 6 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → Rel 𝐹) |
| 6 | dfrel2 6189 | . . . . 5 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 7 | 5, 6 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ◡◡𝐹 = 𝐹) |
| 8 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 9 | 7, 8 | eqeltrd 2833 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ◡◡𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 10 | 9 | anim1ci 616 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆)) → (◡𝐹 ∈ (𝑇 LMHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 LMHom 𝑇))) |
| 11 | islmim2 21033 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆))) | |
| 12 | islmim2 21033 | . 2 ⊢ (◡𝐹 ∈ (𝑇 LMIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 LMHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 LMHom 𝑇))) | |
| 13 | 10, 11, 12 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ◡ccnv 5664 Rel wrel 5670 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 LMHom clmhm 20986 LMIso clmim 20987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-map 8850 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-ghm 19200 df-lmod 20828 df-lmhm 20989 df-lmim 20990 |
| This theorem is referenced by: lmicsym 21039 lbslcic 21815 |
| Copyright terms: Public domain | W3C validator |