![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmimcnv | Structured version Visualization version GIF version |
Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
lmimcnv | ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | 1, 2 | lmhmf 21056 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
4 | frel 6752 | . . . . . 6 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → Rel 𝐹) |
6 | dfrel2 6220 | . . . . 5 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
7 | 5, 6 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ◡◡𝐹 = 𝐹) |
8 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
9 | 7, 8 | eqeltrd 2844 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ◡◡𝐹 ∈ (𝑆 LMHom 𝑇)) |
10 | 9 | anim1ci 615 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆)) → (◡𝐹 ∈ (𝑇 LMHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 LMHom 𝑇))) |
11 | islmim2 21088 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆))) | |
12 | islmim2 21088 | . 2 ⊢ (◡𝐹 ∈ (𝑇 LMIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 LMHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 LMHom 𝑇))) | |
13 | 10, 11, 12 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ◡ccnv 5699 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 LMHom clmhm 21041 LMIso clmim 21042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-ghm 19253 df-lmod 20882 df-lmhm 21044 df-lmim 21045 |
This theorem is referenced by: lmicsym 21094 lbslcic 21884 |
Copyright terms: Public domain | W3C validator |