![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmimcnv | Structured version Visualization version GIF version |
Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
lmimcnv | ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | 1, 2 | lmhmf 20645 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
4 | frel 6723 | . . . . . 6 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → Rel 𝐹) |
6 | dfrel2 6189 | . . . . 5 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
7 | 5, 6 | sylib 217 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ◡◡𝐹 = 𝐹) |
8 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
9 | 7, 8 | eqeltrd 2834 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ◡◡𝐹 ∈ (𝑆 LMHom 𝑇)) |
10 | 9 | anim1ci 617 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆)) → (◡𝐹 ∈ (𝑇 LMHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 LMHom 𝑇))) |
11 | islmim2 20677 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆))) | |
12 | islmim2 20677 | . 2 ⊢ (◡𝐹 ∈ (𝑇 LMIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 LMHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 LMHom 𝑇))) | |
13 | 10, 11, 12 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ◡ccnv 5676 Rel wrel 5682 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 LMHom clmhm 20630 LMIso clmim 20631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-ghm 19090 df-lmod 20473 df-lmhm 20633 df-lmim 20634 |
This theorem is referenced by: lmicsym 20683 lbslcic 21396 |
Copyright terms: Public domain | W3C validator |