Step | Hyp | Ref
| Expression |
1 | | cncfuni.f |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
2 | | cncfuni.auni |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
3 | 2 | sselda 3917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪ 𝐵) |
4 | | eluni2 4840 |
. . . . . 6
⊢ (𝑥 ∈ ∪ 𝐵
↔ ∃𝑏 ∈
𝐵 𝑥 ∈ 𝑏) |
5 | 3, 4 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑏 ∈ 𝐵 𝑥 ∈ 𝑏) |
6 | | simp1l 1195 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏) → 𝜑) |
7 | | simp2 1135 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏) → 𝑏 ∈ 𝐵) |
8 | | elin 3899 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∩ 𝑏) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑏)) |
9 | 8 | biimpri 227 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑏) → 𝑥 ∈ (𝐴 ∩ 𝑏)) |
10 | 9 | adantll 710 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝑏) → 𝑥 ∈ (𝐴 ∩ 𝑏)) |
11 | 10 | 3adant2 1129 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏) → 𝑥 ∈ (𝐴 ∩ 𝑏)) |
12 | | cncfuni.fcn |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ↾ 𝑏) ∈ ((𝐴 ∩ 𝑏)–cn→ℂ)) |
13 | 1 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐹 = 𝐴) |
14 | 13 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑏 ∩ dom 𝐹) = (𝑏 ∩ 𝐴)) |
15 | | incom 4131 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∩ 𝐴) = (𝐴 ∩ 𝑏) |
16 | 14, 15 | eqtr2di 2796 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 ∩ 𝑏) = (𝑏 ∩ dom 𝐹)) |
17 | 16 | reseq2d 5880 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹 ↾ (𝐴 ∩ 𝑏)) = (𝐹 ↾ (𝑏 ∩ dom 𝐹))) |
18 | | frel 6589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:𝐴⟶ℂ → Rel 𝐹) |
19 | 1, 18 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Rel 𝐹) |
20 | | resindm 5929 |
. . . . . . . . . . . . . . . . . 18
⊢ (Rel
𝐹 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹 ↾ 𝑏)) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹 ↾ 𝑏)) |
22 | 17, 21 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 ↾ (𝐴 ∩ 𝑏)) = (𝐹 ↾ 𝑏)) |
23 | | inss1 4159 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∩ 𝑏) ⊆ 𝐴 |
24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐴 ∩ 𝑏) ⊆ 𝐴) |
25 | | cncfuni.acn |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
26 | 24, 25 | sstrd 3927 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 ∩ 𝑏) ⊆ ℂ) |
27 | | ssidd 3940 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ℂ ⊆
ℂ) |
28 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
29 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) = ((TopOpen‘ℂfld)
↾t (𝐴
∩ 𝑏)) |
30 | 28 | cnfldtop 23853 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(TopOpen‘ℂfld) ∈ Top |
31 | | unicntop 23855 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
32 | 31 | restid 17061 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
33 | 30, 32 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
34 | 33 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . 19
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
35 | 28, 29, 34 | cncfcn 23979 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∩ 𝑏) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((𝐴 ∩
𝑏)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn
(TopOpen‘ℂfld))) |
36 | 26, 27, 35 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐴 ∩ 𝑏)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn
(TopOpen‘ℂfld))) |
37 | 36 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn (TopOpen‘ℂfld))
= ((𝐴 ∩ 𝑏)–cn→ℂ)) |
38 | 22, 37 | eleq12d 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn (TopOpen‘ℂfld))
↔ (𝐹 ↾ 𝑏) ∈ ((𝐴 ∩ 𝑏)–cn→ℂ))) |
39 | 38 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn (TopOpen‘ℂfld))
↔ (𝐹 ↾ 𝑏) ∈ ((𝐴 ∩ 𝑏)–cn→ℂ))) |
40 | 12, 39 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn
(TopOpen‘ℂfld))) |
41 | 40 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → (𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn
(TopOpen‘ℂfld))) |
42 | 28 | cnfldtopon 23852 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
43 | 42 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
44 | | resttopon 22220 |
. . . . . . . . . . . . . . 15
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (𝐴 ∩ 𝑏) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) ∈ (TopOn‘(𝐴 ∩ 𝑏))) |
45 | 43, 26, 44 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) ∈ (TopOn‘(𝐴 ∩ 𝑏))) |
46 | 45 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) →
((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) ∈ (TopOn‘(𝐴 ∩ 𝑏))) |
47 | 42 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
48 | | cncnp 22339 |
. . . . . . . . . . . . 13
⊢
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) ∈ (TopOn‘(𝐴 ∩ 𝑏)) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn (TopOpen‘ℂfld))
↔ ((𝐹 ↾ (𝐴 ∩ 𝑏)):(𝐴 ∩ 𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴 ∩ 𝑏)(𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥)))) |
49 | 46, 47, 48 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → ((𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) Cn (TopOpen‘ℂfld))
↔ ((𝐹 ↾ (𝐴 ∩ 𝑏)):(𝐴 ∩ 𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴 ∩ 𝑏)(𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥)))) |
50 | 41, 49 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → ((𝐹 ↾ (𝐴 ∩ 𝑏)):(𝐴 ∩ 𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴 ∩ 𝑏)(𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥))) |
51 | 50 | simprd 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → ∀𝑥 ∈ (𝐴 ∩ 𝑏)(𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
52 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → 𝑥 ∈ (𝐴 ∩ 𝑏)) |
53 | | rspa 3130 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
(𝐴 ∩ 𝑏)(𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥) ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → (𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
54 | 51, 52, 53 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → (𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
55 | 30 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈ Top) |
56 | | cnex 10883 |
. . . . . . . . . . . . . . . 16
⊢ ℂ
∈ V |
57 | 56 | ssex 5240 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℂ → 𝐴 ∈ V) |
58 | 25, 57 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ V) |
59 | | restabs 22224 |
. . . . . . . . . . . . . 14
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝐴 ∩ 𝑏) ⊆ 𝐴 ∧ 𝐴 ∈ V) →
(((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴 ∩ 𝑏)) = ((TopOpen‘ℂfld)
↾t (𝐴
∩ 𝑏))) |
60 | 55, 24, 58, 59 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴 ∩ 𝑏)) = ((TopOpen‘ℂfld)
↾t (𝐴
∩ 𝑏))) |
61 | 60 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) = (((TopOpen‘ℂfld)
↾t 𝐴)
↾t (𝐴
∩ 𝑏))) |
62 | 61 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP (TopOpen‘ℂfld))
= ((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))) |
63 | 62 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝜑 →
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld)
↾t 𝐴)
↾t (𝐴
∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
64 | 63 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) →
((((TopOpen‘ℂfld) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld)
↾t 𝐴)
↾t (𝐴
∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
65 | 54, 64 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → (𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
66 | | resttop 22219 |
. . . . . . . . . . 11
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ∈ V) →
((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top) |
67 | 55, 58, 66 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top) |
68 | 67 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) →
((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top) |
69 | 31 | restuni 22221 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → 𝐴 = ∪
((TopOpen‘ℂfld) ↾t 𝐴)) |
70 | 55, 25, 69 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 = ∪
((TopOpen‘ℂfld) ↾t 𝐴)) |
71 | 24, 70 | sseqtrd 3957 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∩ 𝑏) ⊆ ∪
((TopOpen‘ℂfld) ↾t 𝐴)) |
72 | 71 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → (𝐴 ∩ 𝑏) ⊆ ∪
((TopOpen‘ℂfld) ↾t 𝐴)) |
73 | | cncfuni.opn |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐴 ∩ 𝑏) ∈
((TopOpen‘ℂfld) ↾t 𝐴)) |
74 | 73 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → (𝐴 ∩ 𝑏) ∈
((TopOpen‘ℂfld) ↾t 𝐴)) |
75 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ∪ ((TopOpen‘ℂfld)
↾t 𝐴) =
∪ ((TopOpen‘ℂfld)
↾t 𝐴) |
76 | 75 | isopn3 22125 |
. . . . . . . . . . . . 13
⊢
((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴 ∩ 𝑏) ⊆ ∪
((TopOpen‘ℂfld) ↾t 𝐴)) → ((𝐴 ∩ 𝑏) ∈
((TopOpen‘ℂfld) ↾t 𝐴) ↔
((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴 ∩ 𝑏)) = (𝐴 ∩ 𝑏))) |
77 | 68, 72, 76 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → ((𝐴 ∩ 𝑏) ∈
((TopOpen‘ℂfld) ↾t 𝐴) ↔
((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴 ∩ 𝑏)) = (𝐴 ∩ 𝑏))) |
78 | 74, 77 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) →
((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴 ∩ 𝑏)) = (𝐴 ∩ 𝑏)) |
79 | 78 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → (𝐴 ∩ 𝑏) =
((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴 ∩ 𝑏))) |
80 | 52, 79 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴 ∩ 𝑏))) |
81 | 70 | feq2d 6570 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹:𝐴⟶ℂ ↔ 𝐹:∪
((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)) |
82 | 1, 81 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:∪
((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ) |
83 | 82 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → 𝐹:∪
((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ) |
84 | 75, 31 | cnprest 22348 |
. . . . . . . . 9
⊢
(((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴 ∩ 𝑏) ⊆ ∪
((TopOpen‘ℂfld) ↾t 𝐴)) ∧ (𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴 ∩ 𝑏)) ∧ 𝐹:∪
((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)) → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥))) |
85 | 68, 72, 80, 83, 84 | syl22anc 835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴 ∩ 𝑏)) ∈
(((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴 ∩ 𝑏)) CnP
(TopOpen‘ℂfld))‘𝑥))) |
86 | 65, 85 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ∩ 𝑏)) → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥)) |
87 | 6, 7, 11, 86 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏) → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥)) |
88 | 87 | rexlimdv3a 3214 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥))) |
89 | 5, 88 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥)) |
90 | 89 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥)) |
91 | | resttopon 22220 |
. . . . 5
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝐴 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴)) |
92 | 43, 25, 91 | syl2anc 583 |
. . . 4
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴)) |
93 | | cncnp 22339 |
. . . 4
⊢
((((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
(𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld))
↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥)))) |
94 | 92, 43, 93 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld))
↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝐴) CnP
(TopOpen‘ℂfld))‘𝑥)))) |
95 | 1, 90, 94 | mpbir2and 709 |
. 2
⊢ (𝜑 → 𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝐴) Cn
(TopOpen‘ℂfld))) |
96 | | eqid 2738 |
. . . . 5
⊢
((TopOpen‘ℂfld) ↾t 𝐴) =
((TopOpen‘ℂfld) ↾t 𝐴) |
97 | 28, 96, 34 | cncfcn 23979 |
. . . 4
⊢ ((𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝐴–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐴) Cn
(TopOpen‘ℂfld))) |
98 | 25, 27, 97 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐴–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐴) Cn
(TopOpen‘ℂfld))) |
99 | 98 | eqcomd 2744 |
. 2
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld))
= (𝐴–cn→ℂ)) |
100 | 95, 99 | eleqtrd 2841 |
1
⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |