Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfuni Structured version   Visualization version   GIF version

Theorem cncfuni 45882
Description: A complex function on a subset of the complex numbers is continuous if its domain is the union of relatively open subsets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfuni.acn (𝜑𝐴 ⊆ ℂ)
cncfuni.f (𝜑𝐹:𝐴⟶ℂ)
cncfuni.auni (𝜑𝐴 𝐵)
cncfuni.opn ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
cncfuni.fcn ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
Assertion
Ref Expression
cncfuni (𝜑𝐹 ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏   𝜑,𝑏

Proof of Theorem cncfuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cncfuni.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 cncfuni.auni . . . . . . 7 (𝜑𝐴 𝐵)
32sselda 3963 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 𝐵)
4 eluni2 4892 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑏𝐵 𝑥𝑏)
53, 4sylib 218 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑏𝐵 𝑥𝑏)
6 simp1l 1198 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝜑)
7 simp2 1137 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑏𝐵)
8 elin 3947 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝑏) ↔ (𝑥𝐴𝑥𝑏))
98biimpri 228 . . . . . . . . 9 ((𝑥𝐴𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
109adantll 714 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
11103adant2 1131 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
12 cncfuni.fcn . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
131fdmd 6721 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝐴)
1413ineq2d 4200 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑏 ∩ dom 𝐹) = (𝑏𝐴))
15 incom 4189 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴) = (𝐴𝑏)
1614, 15eqtr2di 2788 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) = (𝑏 ∩ dom 𝐹))
1716reseq2d 5971 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹 ↾ (𝑏 ∩ dom 𝐹)))
18 frel 6716 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶ℂ → Rel 𝐹)
191, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → Rel 𝐹)
20 resindm 6022 . . . . . . . . . . . . . . . . . 18 (Rel 𝐹 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2217, 21eqtrd 2771 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹𝑏))
23 inss1 4217 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑏) ⊆ 𝐴
2423a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝑏) ⊆ 𝐴)
25 cncfuni.acn . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℂ)
2624, 25sstrd 3974 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) ⊆ ℂ)
27 ssidd 3987 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℂ ⊆ ℂ)
28 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
29 eqid 2736 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏))
3028cnfldtop 24727 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) ∈ Top
31 unicntop 24729 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (TopOpen‘ℂfld)
3231restid 17452 . . . . . . . . . . . . . . . . . . . . 21 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3330, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
3433eqcomi 2745 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3528, 29, 34cncfcn 24859 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑏) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3626, 27, 35syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3736eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) = ((𝐴𝑏)–cn→ℂ))
3822, 37eleq12d 2829 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
4012, 39mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
41403adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
4228cnfldtopon 24726 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
44 resttopon 23104 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴𝑏) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4543, 26, 44syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
46453ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4742a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
48 cncnp 23223 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
4946, 47, 48syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
5041, 49mpbid 232 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
5150simprd 495 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
52 simp3 1138 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ (𝐴𝑏))
53 rspa 3235 . . . . . . . . . 10 ((∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5451, 52, 53syl2anc 584 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5530a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
56 cnex 11215 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5756ssex 5296 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5825, 57syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
59 restabs 23108 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴𝑏) ⊆ 𝐴𝐴 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6055, 24, 58, 59syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6160eqcomd 2742 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)))
6261oveq1d 7425 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)))
6362fveq1d 6883 . . . . . . . . . 10 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
64633ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
6554, 64eleqtrd 2837 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
66 resttop 23103 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6755, 58, 66syl2anc 584 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
68673ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6931restuni 23105 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → 𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7055, 25, 69syl2anc 584 . . . . . . . . . . 11 (𝜑𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7124, 70sseqtrd 4000 . . . . . . . . . 10 (𝜑 → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
72713ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
73 cncfuni.opn . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
74733adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
75 eqid 2736 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
7675isopn3 23009 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7768, 72, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7874, 77mpbid 232 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏))
7978eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) = ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8052, 79eleqtrd 2837 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8170feq2d 6697 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴⟶ℂ ↔ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ))
821, 81mpbid 232 . . . . . . . . . 10 (𝜑𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
83823ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
8475, 31cnprest 23232 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) ∧ (𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) ∧ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8568, 72, 80, 83, 84syl22anc 838 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8665, 85mpbird 257 . . . . . . 7 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
876, 7, 11, 86syl3anc 1373 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
8887rexlimdv3a 3146 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑏𝐵 𝑥𝑏𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)))
895, 88mpd 15 . . . 4 ((𝜑𝑥𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
9089ralrimiva 3133 . . 3 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
91 resttopon 23104 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
9243, 25, 91syl2anc 584 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
93 cncnp 23223 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
9492, 43, 93syl2anc 584 . . 3 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
951, 90, 94mpbir2and 713 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
96 eqid 2736 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
9728, 96, 34cncfcn 24859 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
9825, 27, 97syl2anc 584 . . 3 (𝜑 → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
9998eqcomd 2742 . 2 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) = (𝐴cn→ℂ))
10095, 99eleqtrd 2837 1 (𝜑𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  cin 3930  wss 3931   cuni 4888  dom cdm 5659  cres 5661  Rel wrel 5664  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  t crest 17439  TopOpenctopn 17440  fldccnfld 21320  Topctop 22836  TopOnctopon 22853  intcnt 22960   Cn ccn 23167   CnP ccnp 23168  cnccncf 24825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-cn 23170  df-cnp 23171  df-xms 24264  df-ms 24265  df-cncf 24827
This theorem is referenced by:  fouriersw  46227
  Copyright terms: Public domain W3C validator