Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfuni Structured version   Visualization version   GIF version

Theorem cncfuni 45998
Description: A complex function on a subset of the complex numbers is continuous if its domain is the union of relatively open subsets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfuni.acn (𝜑𝐴 ⊆ ℂ)
cncfuni.f (𝜑𝐹:𝐴⟶ℂ)
cncfuni.auni (𝜑𝐴 𝐵)
cncfuni.opn ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
cncfuni.fcn ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
Assertion
Ref Expression
cncfuni (𝜑𝐹 ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏   𝜑,𝑏

Proof of Theorem cncfuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cncfuni.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 cncfuni.auni . . . . . . 7 (𝜑𝐴 𝐵)
32sselda 3931 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 𝐵)
4 eluni2 4864 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑏𝐵 𝑥𝑏)
53, 4sylib 218 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑏𝐵 𝑥𝑏)
6 simp1l 1198 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝜑)
7 simp2 1137 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑏𝐵)
8 elin 3915 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝑏) ↔ (𝑥𝐴𝑥𝑏))
98biimpri 228 . . . . . . . . 9 ((𝑥𝐴𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
109adantll 714 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
11103adant2 1131 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
12 cncfuni.fcn . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
131fdmd 6669 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝐴)
1413ineq2d 4171 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑏 ∩ dom 𝐹) = (𝑏𝐴))
15 incom 4160 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴) = (𝐴𝑏)
1614, 15eqtr2di 2785 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) = (𝑏 ∩ dom 𝐹))
1716reseq2d 5935 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹 ↾ (𝑏 ∩ dom 𝐹)))
18 frel 6664 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶ℂ → Rel 𝐹)
191, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → Rel 𝐹)
20 resindm 5986 . . . . . . . . . . . . . . . . . 18 (Rel 𝐹 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2217, 21eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹𝑏))
23 inss1 4188 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑏) ⊆ 𝐴
2423a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝑏) ⊆ 𝐴)
25 cncfuni.acn . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℂ)
2624, 25sstrd 3942 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) ⊆ ℂ)
27 ssidd 3955 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℂ ⊆ ℂ)
28 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
29 eqid 2733 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏))
3028cnfldtop 24708 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) ∈ Top
31 unicntop 24710 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (TopOpen‘ℂfld)
3231restid 17347 . . . . . . . . . . . . . . . . . . . . 21 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3330, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
3433eqcomi 2742 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3528, 29, 34cncfcn 24840 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑏) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3626, 27, 35syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3736eqcomd 2739 . . . . . . . . . . . . . . . 16 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) = ((𝐴𝑏)–cn→ℂ))
3822, 37eleq12d 2827 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
4012, 39mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
41403adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
4228cnfldtopon 24707 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
44 resttopon 23086 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴𝑏) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4543, 26, 44syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
46453ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4742a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
48 cncnp 23205 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
4946, 47, 48syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
5041, 49mpbid 232 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
5150simprd 495 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
52 simp3 1138 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ (𝐴𝑏))
53 rspa 3223 . . . . . . . . . 10 ((∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5451, 52, 53syl2anc 584 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5530a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
56 cnex 11097 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5756ssex 5263 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5825, 57syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
59 restabs 23090 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴𝑏) ⊆ 𝐴𝐴 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6055, 24, 58, 59syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6160eqcomd 2739 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)))
6261oveq1d 7370 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)))
6362fveq1d 6833 . . . . . . . . . 10 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
64633ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
6554, 64eleqtrd 2835 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
66 resttop 23085 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6755, 58, 66syl2anc 584 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
68673ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6931restuni 23087 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → 𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7055, 25, 69syl2anc 584 . . . . . . . . . . 11 (𝜑𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7124, 70sseqtrd 3968 . . . . . . . . . 10 (𝜑 → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
72713ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
73 cncfuni.opn . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
74733adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
75 eqid 2733 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
7675isopn3 22991 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7768, 72, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7874, 77mpbid 232 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏))
7978eqcomd 2739 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) = ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8052, 79eleqtrd 2835 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8170feq2d 6643 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴⟶ℂ ↔ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ))
821, 81mpbid 232 . . . . . . . . . 10 (𝜑𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
83823ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
8475, 31cnprest 23214 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) ∧ (𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) ∧ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8568, 72, 80, 83, 84syl22anc 838 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8665, 85mpbird 257 . . . . . . 7 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
876, 7, 11, 86syl3anc 1373 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
8887rexlimdv3a 3139 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑏𝐵 𝑥𝑏𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)))
895, 88mpd 15 . . . 4 ((𝜑𝑥𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
9089ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
91 resttopon 23086 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
9243, 25, 91syl2anc 584 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
93 cncnp 23205 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
9492, 43, 93syl2anc 584 . . 3 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
951, 90, 94mpbir2and 713 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
96 eqid 2733 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
9728, 96, 34cncfcn 24840 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
9825, 27, 97syl2anc 584 . . 3 (𝜑 → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
9998eqcomd 2739 . 2 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) = (𝐴cn→ℂ))
10095, 99eleqtrd 2835 1 (𝜑𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wrex 3058  Vcvv 3438  cin 3898  wss 3899   cuni 4860  dom cdm 5621  cres 5623  Rel wrel 5626  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  t crest 17334  TopOpenctopn 17335  fldccnfld 21301  Topctop 22818  TopOnctopon 22835  intcnt 22942   Cn ccn 23149   CnP ccnp 23150  cnccncf 24806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fi 9305  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-fz 13418  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-struct 17068  df-slot 17103  df-ndx 17115  df-base 17131  df-plusg 17184  df-mulr 17185  df-starv 17186  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-rest 17336  df-topn 17337  df-topgen 17357  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-ntr 22945  df-cn 23152  df-cnp 23153  df-xms 24245  df-ms 24246  df-cncf 24808
This theorem is referenced by:  fouriersw  46343
  Copyright terms: Public domain W3C validator