Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfuni Structured version   Visualization version   GIF version

Theorem cncfuni 45807
Description: A complex function on a subset of the complex numbers is continuous if its domain is the union of relatively open subsets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfuni.acn (𝜑𝐴 ⊆ ℂ)
cncfuni.f (𝜑𝐹:𝐴⟶ℂ)
cncfuni.auni (𝜑𝐴 𝐵)
cncfuni.opn ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
cncfuni.fcn ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
Assertion
Ref Expression
cncfuni (𝜑𝐹 ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏   𝜑,𝑏

Proof of Theorem cncfuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cncfuni.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 cncfuni.auni . . . . . . 7 (𝜑𝐴 𝐵)
32sselda 4008 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 𝐵)
4 eluni2 4935 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑏𝐵 𝑥𝑏)
53, 4sylib 218 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑏𝐵 𝑥𝑏)
6 simp1l 1197 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝜑)
7 simp2 1137 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑏𝐵)
8 elin 3992 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝑏) ↔ (𝑥𝐴𝑥𝑏))
98biimpri 228 . . . . . . . . 9 ((𝑥𝐴𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
109adantll 713 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
11103adant2 1131 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
12 cncfuni.fcn . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
131fdmd 6757 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝐴)
1413ineq2d 4241 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑏 ∩ dom 𝐹) = (𝑏𝐴))
15 incom 4230 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴) = (𝐴𝑏)
1614, 15eqtr2di 2797 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) = (𝑏 ∩ dom 𝐹))
1716reseq2d 6009 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹 ↾ (𝑏 ∩ dom 𝐹)))
18 frel 6752 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶ℂ → Rel 𝐹)
191, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → Rel 𝐹)
20 resindm 6059 . . . . . . . . . . . . . . . . . 18 (Rel 𝐹 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2217, 21eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹𝑏))
23 inss1 4258 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑏) ⊆ 𝐴
2423a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝑏) ⊆ 𝐴)
25 cncfuni.acn . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℂ)
2624, 25sstrd 4019 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) ⊆ ℂ)
27 ssidd 4032 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℂ ⊆ ℂ)
28 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
29 eqid 2740 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏))
3028cnfldtop 24825 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) ∈ Top
31 unicntop 24827 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (TopOpen‘ℂfld)
3231restid 17493 . . . . . . . . . . . . . . . . . . . . 21 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3330, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
3433eqcomi 2749 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3528, 29, 34cncfcn 24955 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑏) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3626, 27, 35syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3736eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) = ((𝐴𝑏)–cn→ℂ))
3822, 37eleq12d 2838 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
4012, 39mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
41403adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
4228cnfldtopon 24824 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
44 resttopon 23190 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴𝑏) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4543, 26, 44syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
46453ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4742a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
48 cncnp 23309 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
4946, 47, 48syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
5041, 49mpbid 232 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
5150simprd 495 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
52 simp3 1138 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ (𝐴𝑏))
53 rspa 3254 . . . . . . . . . 10 ((∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5451, 52, 53syl2anc 583 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5530a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
56 cnex 11265 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5756ssex 5339 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5825, 57syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
59 restabs 23194 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴𝑏) ⊆ 𝐴𝐴 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6055, 24, 58, 59syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6160eqcomd 2746 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)))
6261oveq1d 7463 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)))
6362fveq1d 6922 . . . . . . . . . 10 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
64633ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
6554, 64eleqtrd 2846 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
66 resttop 23189 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6755, 58, 66syl2anc 583 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
68673ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6931restuni 23191 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → 𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7055, 25, 69syl2anc 583 . . . . . . . . . . 11 (𝜑𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7124, 70sseqtrd 4049 . . . . . . . . . 10 (𝜑 → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
72713ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
73 cncfuni.opn . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
74733adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
75 eqid 2740 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
7675isopn3 23095 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7768, 72, 76syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7874, 77mpbid 232 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏))
7978eqcomd 2746 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) = ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8052, 79eleqtrd 2846 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8170feq2d 6733 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴⟶ℂ ↔ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ))
821, 81mpbid 232 . . . . . . . . . 10 (𝜑𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
83823ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
8475, 31cnprest 23318 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) ∧ (𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) ∧ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8568, 72, 80, 83, 84syl22anc 838 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8665, 85mpbird 257 . . . . . . 7 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
876, 7, 11, 86syl3anc 1371 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
8887rexlimdv3a 3165 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑏𝐵 𝑥𝑏𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)))
895, 88mpd 15 . . . 4 ((𝜑𝑥𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
9089ralrimiva 3152 . . 3 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
91 resttopon 23190 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
9243, 25, 91syl2anc 583 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
93 cncnp 23309 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
9492, 43, 93syl2anc 583 . . 3 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
951, 90, 94mpbir2and 712 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
96 eqid 2740 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
9728, 96, 34cncfcn 24955 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
9825, 27, 97syl2anc 583 . . 3 (𝜑 → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
9998eqcomd 2746 . 2 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) = (𝐴cn→ℂ))
10095, 99eleqtrd 2846 1 (𝜑𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976   cuni 4931  dom cdm 5700  cres 5702  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  t crest 17480  TopOpenctopn 17481  fldccnfld 21387  Topctop 22920  TopOnctopon 22937  intcnt 23046   Cn ccn 23253   CnP ccnp 23254  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-cn 23256  df-cnp 23257  df-xms 24351  df-ms 24352  df-cncf 24923
This theorem is referenced by:  fouriersw  46152
  Copyright terms: Public domain W3C validator