Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfuni Structured version   Visualization version   GIF version

Theorem cncfuni 43317
Description: A complex function on a subset of the complex numbers is continuous if its domain is the union of relatively open subsets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfuni.acn (𝜑𝐴 ⊆ ℂ)
cncfuni.f (𝜑𝐹:𝐴⟶ℂ)
cncfuni.auni (𝜑𝐴 𝐵)
cncfuni.opn ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
cncfuni.fcn ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
Assertion
Ref Expression
cncfuni (𝜑𝐹 ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏   𝜑,𝑏

Proof of Theorem cncfuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cncfuni.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 cncfuni.auni . . . . . . 7 (𝜑𝐴 𝐵)
32sselda 3917 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 𝐵)
4 eluni2 4840 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑏𝐵 𝑥𝑏)
53, 4sylib 217 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑏𝐵 𝑥𝑏)
6 simp1l 1195 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝜑)
7 simp2 1135 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑏𝐵)
8 elin 3899 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝑏) ↔ (𝑥𝐴𝑥𝑏))
98biimpri 227 . . . . . . . . 9 ((𝑥𝐴𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
109adantll 710 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
11103adant2 1129 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
12 cncfuni.fcn . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
131fdmd 6595 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝐴)
1413ineq2d 4143 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑏 ∩ dom 𝐹) = (𝑏𝐴))
15 incom 4131 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴) = (𝐴𝑏)
1614, 15eqtr2di 2796 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) = (𝑏 ∩ dom 𝐹))
1716reseq2d 5880 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹 ↾ (𝑏 ∩ dom 𝐹)))
18 frel 6589 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶ℂ → Rel 𝐹)
191, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → Rel 𝐹)
20 resindm 5929 . . . . . . . . . . . . . . . . . 18 (Rel 𝐹 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2217, 21eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹𝑏))
23 inss1 4159 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑏) ⊆ 𝐴
2423a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝑏) ⊆ 𝐴)
25 cncfuni.acn . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℂ)
2624, 25sstrd 3927 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) ⊆ ℂ)
27 ssidd 3940 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℂ ⊆ ℂ)
28 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
29 eqid 2738 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏))
3028cnfldtop 23853 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) ∈ Top
31 unicntop 23855 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (TopOpen‘ℂfld)
3231restid 17061 . . . . . . . . . . . . . . . . . . . . 21 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3330, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
3433eqcomi 2747 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3528, 29, 34cncfcn 23979 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑏) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3626, 27, 35syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3736eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) = ((𝐴𝑏)–cn→ℂ))
3822, 37eleq12d 2833 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
4012, 39mpbird 256 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
41403adant3 1130 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
4228cnfldtopon 23852 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
44 resttopon 22220 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴𝑏) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4543, 26, 44syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
46453ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4742a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
48 cncnp 22339 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
4946, 47, 48syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
5041, 49mpbid 231 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
5150simprd 495 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
52 simp3 1136 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ (𝐴𝑏))
53 rspa 3130 . . . . . . . . . 10 ((∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5451, 52, 53syl2anc 583 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5530a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
56 cnex 10883 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5756ssex 5240 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5825, 57syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
59 restabs 22224 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴𝑏) ⊆ 𝐴𝐴 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6055, 24, 58, 59syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6160eqcomd 2744 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)))
6261oveq1d 7270 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)))
6362fveq1d 6758 . . . . . . . . . 10 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
64633ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
6554, 64eleqtrd 2841 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
66 resttop 22219 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6755, 58, 66syl2anc 583 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
68673ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6931restuni 22221 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → 𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7055, 25, 69syl2anc 583 . . . . . . . . . . 11 (𝜑𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7124, 70sseqtrd 3957 . . . . . . . . . 10 (𝜑 → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
72713ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
73 cncfuni.opn . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
74733adant3 1130 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
75 eqid 2738 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
7675isopn3 22125 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7768, 72, 76syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7874, 77mpbid 231 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏))
7978eqcomd 2744 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) = ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8052, 79eleqtrd 2841 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8170feq2d 6570 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴⟶ℂ ↔ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ))
821, 81mpbid 231 . . . . . . . . . 10 (𝜑𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
83823ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
8475, 31cnprest 22348 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) ∧ (𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) ∧ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8568, 72, 80, 83, 84syl22anc 835 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8665, 85mpbird 256 . . . . . . 7 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
876, 7, 11, 86syl3anc 1369 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
8887rexlimdv3a 3214 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑏𝐵 𝑥𝑏𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)))
895, 88mpd 15 . . . 4 ((𝜑𝑥𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
9089ralrimiva 3107 . . 3 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
91 resttopon 22220 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
9243, 25, 91syl2anc 583 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
93 cncnp 22339 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
9492, 43, 93syl2anc 583 . . 3 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
951, 90, 94mpbir2and 709 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
96 eqid 2738 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
9728, 96, 34cncfcn 23979 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
9825, 27, 97syl2anc 583 . . 3 (𝜑 → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
9998eqcomd 2744 . 2 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) = (𝐴cn→ℂ))
10095, 99eleqtrd 2841 1 (𝜑𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883   cuni 4836  dom cdm 5580  cres 5582  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967  intcnt 22076   Cn ccn 22283   CnP ccnp 22284  cnccncf 23945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-cn 22286  df-cnp 22287  df-xms 23381  df-ms 23382  df-cncf 23947
This theorem is referenced by:  fouriersw  43662
  Copyright terms: Public domain W3C validator