MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngimcnv Structured version   Visualization version   GIF version

Theorem rngimcnv 20343
Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.)
Assertion
Ref Expression
rngimcnv (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆))

Proof of Theorem rngimcnv
StepHypRef Expression
1 rngimrcl 20333 . 2 (𝐹 ∈ (𝑆 RngIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
2 isrngim 20332 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) ↔ (𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆))))
3 eqid 2724 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2724 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
53, 4rnghmf 20335 . . . . . . 7 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6 frel 6712 . . . . . . . 8 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹)
7 dfrel2 6178 . . . . . . . 8 (Rel 𝐹𝐹 = 𝐹)
86, 7sylib 217 . . . . . . 7 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 = 𝐹)
95, 8syl 17 . . . . . 6 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 = 𝐹)
10 id 22 . . . . . 6 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇))
119, 10eqeltrd 2825 . . . . 5 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇))
1211anim1ci 615 . . . 4 ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆)) → (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇)))
13 isrngim 20332 . . . . 5 ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇))))
1413ancoms 458 . . . 4 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇))))
1512, 14imbitrrid 245 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆)) → 𝐹 ∈ (𝑇 RngIso 𝑆)))
162, 15sylbid 239 . 2 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆)))
171, 16mpcom 38 1 (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  ccnv 5665  Rel wrel 5671  wf 6529  cfv 6533  (class class class)co 7401  Basecbs 17140   RngHom crnghm 20321   RngIso crngim 20322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8817  df-ghm 19124  df-abl 19688  df-rng 20043  df-rnghm 20323  df-rngim 20324
This theorem is referenced by:  rngisom1  20353  rngringbdlem2  21145  rngqiprngu  21156
  Copyright terms: Public domain W3C validator