![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngimcnv | Structured version Visualization version GIF version |
Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.) |
Ref | Expression |
---|---|
rngimcnv | ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngimrcl 20397 | . 2 ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) | |
2 | isrngim 20396 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) ↔ (𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)))) | |
3 | eqid 2725 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | eqid 2725 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
5 | 3, 4 | rnghmf 20399 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
6 | frel 6728 | . . . . . . . 8 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
7 | dfrel2 6195 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
8 | 6, 7 | sylib 217 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
9 | 5, 8 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → ◡◡𝐹 = 𝐹) |
10 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇)) | |
11 | 9, 10 | eqeltrd 2825 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)) |
12 | 11 | anim1ci 614 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)) → (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇))) |
13 | isrngim 20396 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (◡𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)))) | |
14 | 13 | ancoms 457 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (◡𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)))) |
15 | 12, 14 | imbitrrid 245 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)) → ◡𝐹 ∈ (𝑇 RngIso 𝑆))) |
16 | 2, 15 | sylbid 239 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆))) |
17 | 1, 16 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ◡ccnv 5677 Rel wrel 5683 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 RngHom crnghm 20385 RngIso crngim 20386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-map 8847 df-ghm 19176 df-abl 19750 df-rng 20105 df-rnghm 20387 df-rngim 20388 |
This theorem is referenced by: rngisom1 20417 rngringbdlem2 21214 rngqiprngu 21225 |
Copyright terms: Public domain | W3C validator |