![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngimcnv | Structured version Visualization version GIF version |
Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.) |
Ref | Expression |
---|---|
rngimcnv | ⊢ (𝐹 ∈ (𝑆 RngIsom 𝑇) → ◡𝐹 ∈ (𝑇 RngIsom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngimrcl 46680 | . 2 ⊢ (𝐹 ∈ (𝑆 RngIsom 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) | |
2 | isrngisom 46679 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIsom 𝑇) ↔ (𝐹 ∈ (𝑆 RngHomo 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHomo 𝑆)))) | |
3 | eqid 2732 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | eqid 2732 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
5 | 3, 4 | rnghmf 46682 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 RngHomo 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
6 | frel 6719 | . . . . . . . 8 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
7 | dfrel2 6185 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
8 | 6, 7 | sylib 217 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
9 | 5, 8 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHomo 𝑇) → ◡◡𝐹 = 𝐹) |
10 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHomo 𝑇) → 𝐹 ∈ (𝑆 RngHomo 𝑇)) | |
11 | 9, 10 | eqeltrd 2833 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 RngHomo 𝑇) → ◡◡𝐹 ∈ (𝑆 RngHomo 𝑇)) |
12 | 11 | anim1ci 616 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RngHomo 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHomo 𝑆)) → (◡𝐹 ∈ (𝑇 RngHomo 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHomo 𝑇))) |
13 | isrngisom 46679 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (◡𝐹 ∈ (𝑇 RngIsom 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHomo 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHomo 𝑇)))) | |
14 | 13 | ancoms 459 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (◡𝐹 ∈ (𝑇 RngIsom 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHomo 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHomo 𝑇)))) |
15 | 12, 14 | imbitrrid 245 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝐹 ∈ (𝑆 RngHomo 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHomo 𝑆)) → ◡𝐹 ∈ (𝑇 RngIsom 𝑆))) |
16 | 2, 15 | sylbid 239 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIsom 𝑇) → ◡𝐹 ∈ (𝑇 RngIsom 𝑆))) |
17 | 1, 16 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝑆 RngIsom 𝑇) → ◡𝐹 ∈ (𝑇 RngIsom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ◡ccnv 5674 Rel wrel 5680 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 RngHomo crngh 46668 RngIsom crngs 46669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-ghm 19084 df-abl 19645 df-rng 46635 df-rnghomo 46670 df-rngisom 46671 |
This theorem is referenced by: rngisom1 46703 rngringbdlem2 46772 |
Copyright terms: Public domain | W3C validator |