| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngimcnv | Structured version Visualization version GIF version | ||
| Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngimcnv | ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngimrcl 20370 | . 2 ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) | |
| 2 | isrngim 20369 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) ↔ (𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)))) | |
| 3 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 5 | 3, 4 | rnghmf 20372 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 6 | frel 6662 | . . . . . . . 8 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
| 7 | dfrel2 6142 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 8 | 6, 7 | sylib 218 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
| 9 | 5, 8 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → ◡◡𝐹 = 𝐹) |
| 10 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇)) | |
| 11 | 9, 10 | eqeltrd 2831 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)) |
| 12 | 11 | anim1ci 616 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)) → (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇))) |
| 13 | isrngim 20369 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (◡𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)))) | |
| 14 | 13 | ancoms 458 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (◡𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)))) |
| 15 | 12, 14 | imbitrrid 246 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)) → ◡𝐹 ∈ (𝑇 RngIso 𝑆))) |
| 16 | 2, 15 | sylbid 240 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆))) |
| 17 | 1, 16 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ◡ccnv 5618 Rel wrel 5624 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 RngHom crnghm 20358 RngIso crngim 20359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ghm 19131 df-abl 19701 df-rng 20077 df-rnghm 20360 df-rngim 20361 |
| This theorem is referenced by: rngisom1 20390 rngringbdlem2 21250 rngqiprngu 21261 |
| Copyright terms: Public domain | W3C validator |