![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngimcnv | Structured version Visualization version GIF version |
Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.) |
Ref | Expression |
---|---|
rngimcnv | ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngimrcl 20333 | . 2 ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) | |
2 | isrngim 20332 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) ↔ (𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)))) | |
3 | eqid 2724 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | eqid 2724 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
5 | 3, 4 | rnghmf 20335 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
6 | frel 6712 | . . . . . . . 8 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
7 | dfrel2 6178 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
8 | 6, 7 | sylib 217 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
9 | 5, 8 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → ◡◡𝐹 = 𝐹) |
10 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇)) | |
11 | 9, 10 | eqeltrd 2825 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)) |
12 | 11 | anim1ci 615 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)) → (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇))) |
13 | isrngim 20332 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (◡𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)))) | |
14 | 13 | ancoms 458 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (◡𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)))) |
15 | 12, 14 | imbitrrid 245 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)) → ◡𝐹 ∈ (𝑇 RngIso 𝑆))) |
16 | 2, 15 | sylbid 239 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆))) |
17 | 1, 16 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ◡ccnv 5665 Rel wrel 5671 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 Basecbs 17140 RngHom crnghm 20321 RngIso crngim 20322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8817 df-ghm 19124 df-abl 19688 df-rng 20043 df-rnghm 20323 df-rngim 20324 |
This theorem is referenced by: rngisom1 20353 rngringbdlem2 21145 rngqiprngu 21156 |
Copyright terms: Public domain | W3C validator |