MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngimcnv Structured version   Visualization version   GIF version

Theorem rngimcnv 20372
Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.)
Assertion
Ref Expression
rngimcnv (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆))

Proof of Theorem rngimcnv
StepHypRef Expression
1 rngimrcl 20362 . 2 (𝐹 ∈ (𝑆 RngIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
2 isrngim 20361 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) ↔ (𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆))))
3 eqid 2730 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2730 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
53, 4rnghmf 20364 . . . . . . 7 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6 frel 6696 . . . . . . . 8 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹)
7 dfrel2 6165 . . . . . . . 8 (Rel 𝐹𝐹 = 𝐹)
86, 7sylib 218 . . . . . . 7 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 = 𝐹)
95, 8syl 17 . . . . . 6 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 = 𝐹)
10 id 22 . . . . . 6 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇))
119, 10eqeltrd 2829 . . . . 5 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇))
1211anim1ci 616 . . . 4 ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆)) → (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇)))
13 isrngim 20361 . . . . 5 ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇))))
1413ancoms 458 . . . 4 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇))))
1512, 14imbitrrid 246 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆)) → 𝐹 ∈ (𝑇 RngIso 𝑆)))
162, 15sylbid 240 . 2 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆)))
171, 16mpcom 38 1 (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  ccnv 5640  Rel wrel 5646  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186   RngHom crnghm 20350   RngIso crngim 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ghm 19152  df-abl 19720  df-rng 20069  df-rnghm 20352  df-rngim 20353
This theorem is referenced by:  rngisom1  20382  rngringbdlem2  21224  rngqiprngu  21235
  Copyright terms: Public domain W3C validator