MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngimcnv Structured version   Visualization version   GIF version

Theorem rngimcnv 20482
Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.)
Assertion
Ref Expression
rngimcnv (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆))

Proof of Theorem rngimcnv
StepHypRef Expression
1 rngimrcl 20472 . 2 (𝐹 ∈ (𝑆 RngIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
2 isrngim 20471 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) ↔ (𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆))))
3 eqid 2740 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2740 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
53, 4rnghmf 20474 . . . . . . 7 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6 frel 6752 . . . . . . . 8 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹)
7 dfrel2 6220 . . . . . . . 8 (Rel 𝐹𝐹 = 𝐹)
86, 7sylib 218 . . . . . . 7 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 = 𝐹)
95, 8syl 17 . . . . . 6 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 = 𝐹)
10 id 22 . . . . . 6 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇))
119, 10eqeltrd 2844 . . . . 5 (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇))
1211anim1ci 615 . . . 4 ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆)) → (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇)))
13 isrngim 20471 . . . . 5 ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇))))
1413ancoms 458 . . . 4 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (𝐹 ∈ (𝑇 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑇))))
1512, 14imbitrrid 246 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ 𝐹 ∈ (𝑇 RngHom 𝑆)) → 𝐹 ∈ (𝑇 RngIso 𝑆)))
162, 15sylbid 240 . 2 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆)))
171, 16mpcom 38 1 (𝐹 ∈ (𝑆 RngIso 𝑇) → 𝐹 ∈ (𝑇 RngIso 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  ccnv 5699  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258   RngHom crnghm 20460   RngIso crngim 20461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-ghm 19253  df-abl 19825  df-rng 20180  df-rnghm 20462  df-rngim 20463
This theorem is referenced by:  rngisom1  20492  rngringbdlem2  21340  rngqiprngu  21351
  Copyright terms: Public domain W3C validator