| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngimcnv | Structured version Visualization version GIF version | ||
| Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngimcnv | ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngimrcl 20366 | . 2 ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) | |
| 2 | isrngim 20365 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) ↔ (𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)))) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 5 | 3, 4 | rnghmf 20368 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 6 | frel 6675 | . . . . . . . 8 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
| 7 | dfrel2 6150 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 8 | 6, 7 | sylib 218 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
| 9 | 5, 8 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → ◡◡𝐹 = 𝐹) |
| 10 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → 𝐹 ∈ (𝑆 RngHom 𝑇)) | |
| 11 | 9, 10 | eqeltrd 2828 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 RngHom 𝑇) → ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)) |
| 12 | 11 | anim1ci 616 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)) → (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇))) |
| 13 | isrngim 20365 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (◡𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)))) | |
| 14 | 13 | ancoms 458 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (◡𝐹 ∈ (𝑇 RngIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 RngHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 RngHom 𝑇)))) |
| 15 | 12, 14 | imbitrrid 246 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝐹 ∈ (𝑆 RngHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 RngHom 𝑆)) → ◡𝐹 ∈ (𝑇 RngIso 𝑆))) |
| 16 | 2, 15 | sylbid 240 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆))) |
| 17 | 1, 16 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ◡ccnv 5630 Rel wrel 5636 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 RngHom crnghm 20354 RngIso crngim 20355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-ghm 19127 df-abl 19697 df-rng 20073 df-rnghm 20356 df-rngim 20357 |
| This theorem is referenced by: rngisom1 20386 rngringbdlem2 21249 rngqiprngu 21260 |
| Copyright terms: Public domain | W3C validator |