| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gimcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a group isomorphism is a group isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| gimcnv | ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | 1, 2 | ghmf 19138 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 4 | frel 6662 | . . . . . 6 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
| 5 | dfrel2 6142 | . . . . . 6 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
| 7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ◡◡𝐹 = 𝐹) |
| 8 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 9 | 7, 8 | eqeltrd 2831 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 10 | 9 | anim1ci 616 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇))) |
| 11 | isgim2 19183 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) | |
| 12 | isgim2 19183 | . 2 ⊢ (◡𝐹 ∈ (𝑇 GrpIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇))) | |
| 13 | 10, 11, 12 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ◡ccnv 5618 Rel wrel 5624 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 GrpHom cghm 19130 GrpIso cgim 19175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-ghm 19131 df-gim 19177 |
| This theorem is referenced by: gicsym 19193 reloggim 26541 abliso 33024 |
| Copyright terms: Public domain | W3C validator |