| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gimcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a group isomorphism is a group isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| gimcnv | ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | 1, 2 | ghmf 19203 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 4 | frel 6711 | . . . . . 6 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
| 5 | dfrel2 6178 | . . . . . 6 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
| 7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ◡◡𝐹 = 𝐹) |
| 8 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 9 | 7, 8 | eqeltrd 2834 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 10 | 9 | anim1ci 616 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇))) |
| 11 | isgim2 19248 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) | |
| 12 | isgim2 19248 | . 2 ⊢ (◡𝐹 ∈ (𝑇 GrpIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇))) | |
| 13 | 10, 11, 12 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ◡ccnv 5653 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 GrpHom cghm 19195 GrpIso cgim 19240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ghm 19196 df-gim 19242 |
| This theorem is referenced by: gicsym 19258 reloggim 26560 abliso 33031 |
| Copyright terms: Public domain | W3C validator |