![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gimcnv | Structured version Visualization version GIF version |
Description: The converse of a group isomorphism is a group isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
gimcnv | ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | 1, 2 | ghmf 19251 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
4 | frel 6742 | . . . . . 6 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
5 | dfrel2 6211 | . . . . . 6 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ◡◡𝐹 = 𝐹) |
8 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
9 | 7, 8 | eqeltrd 2839 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇)) |
10 | 9 | anim1ci 616 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇))) |
11 | isgim2 19296 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) | |
12 | isgim2 19296 | . 2 ⊢ (◡𝐹 ∈ (𝑇 GrpIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇))) | |
13 | 10, 11, 12 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ◡ccnv 5688 Rel wrel 5694 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 GrpHom cghm 19243 GrpIso cgim 19288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-ghm 19244 df-gim 19290 |
This theorem is referenced by: gicsym 19306 reloggim 26656 abliso 33024 |
Copyright terms: Public domain | W3C validator |