![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gimcnv | Structured version Visualization version GIF version |
Description: The converse of a group isomorphism is a group isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
gimcnv | ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2727 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | 1, 2 | ghmf 19179 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
4 | frel 6730 | . . . . . 6 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹) | |
5 | dfrel2 6196 | . . . . . 6 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
6 | 4, 5 | sylib 217 | . . . . 5 ⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ◡◡𝐹 = 𝐹) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ◡◡𝐹 = 𝐹) |
8 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
9 | 7, 8 | eqeltrd 2828 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇)) |
10 | 9 | anim1ci 614 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇))) |
11 | isgim2 19224 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) | |
12 | isgim2 19224 | . 2 ⊢ (◡𝐹 ∈ (𝑇 GrpIso 𝑆) ↔ (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ ◡◡𝐹 ∈ (𝑆 GrpHom 𝑇))) | |
13 | 10, 11, 12 | 3imtr4i 291 | 1 ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ◡ccnv 5679 Rel wrel 5685 ⟶wf 6547 ‘cfv 6551 (class class class)co 7424 Basecbs 17185 GrpHom cghm 19172 GrpIso cgim 19216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18898 df-ghm 19173 df-gim 19218 |
This theorem is referenced by: gicsym 19234 reloggim 26551 abliso 32774 |
Copyright terms: Public domain | W3C validator |