| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasless | Structured version Visualization version GIF version | ||
| Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasless.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasless.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasless.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasless.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasless.l | ⊢ ≤ = (le‘𝑈) |
| Ref | Expression |
|---|---|
| imasless | ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasless.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasless.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasless.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imasless.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | eqid 2729 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
| 6 | imasless.l | . . 3 ⊢ ≤ = (le‘𝑈) | |
| 7 | 1, 2, 3, 4, 5, 6 | imasle 17486 | . 2 ⊢ (𝜑 → ≤ = ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
| 8 | relco 6079 | . . . 4 ⊢ Rel ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) | |
| 9 | relssdmrn 6241 | . . . 4 ⊢ (Rel ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹))) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
| 11 | dmco 6227 | . . . . 5 ⊢ dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) = (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) | |
| 12 | fof 6772 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
| 13 | frel 6693 | . . . . . . . . 9 ⊢ (𝐹:𝑉⟶𝐵 → Rel 𝐹) | |
| 14 | 3, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → Rel 𝐹) |
| 15 | dfrel2 6162 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 16 | 14, 15 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → ◡◡𝐹 = 𝐹) |
| 17 | 16 | imaeq1d 6030 | . . . . . 6 ⊢ (𝜑 → (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) = (𝐹 “ dom (𝐹 ∘ (le‘𝑅)))) |
| 18 | imassrn 6042 | . . . . . . 7 ⊢ (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ ran 𝐹 | |
| 19 | forn 6775 | . . . . . . . 8 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 20 | 3, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
| 21 | 18, 20 | sseqtrid 3989 | . . . . . 6 ⊢ (𝜑 → (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵) |
| 22 | 17, 21 | eqsstrd 3981 | . . . . 5 ⊢ (𝜑 → (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵) |
| 23 | 11, 22 | eqsstrid 3985 | . . . 4 ⊢ (𝜑 → dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) |
| 24 | rncoss 5939 | . . . . 5 ⊢ ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ ran (𝐹 ∘ (le‘𝑅)) | |
| 25 | rnco2 6226 | . . . . . 6 ⊢ ran (𝐹 ∘ (le‘𝑅)) = (𝐹 “ ran (le‘𝑅)) | |
| 26 | imassrn 6042 | . . . . . . 7 ⊢ (𝐹 “ ran (le‘𝑅)) ⊆ ran 𝐹 | |
| 27 | 26, 20 | sseqtrid 3989 | . . . . . 6 ⊢ (𝜑 → (𝐹 “ ran (le‘𝑅)) ⊆ 𝐵) |
| 28 | 25, 27 | eqsstrid 3985 | . . . . 5 ⊢ (𝜑 → ran (𝐹 ∘ (le‘𝑅)) ⊆ 𝐵) |
| 29 | 24, 28 | sstrid 3958 | . . . 4 ⊢ (𝜑 → ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) |
| 30 | xpss12 5653 | . . . 4 ⊢ ((dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵 ∧ ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) → (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) ⊆ (𝐵 × 𝐵)) | |
| 31 | 23, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) ⊆ (𝐵 × 𝐵)) |
| 32 | 10, 31 | sstrid 3958 | . 2 ⊢ (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (𝐵 × 𝐵)) |
| 33 | 7, 32 | eqsstrd 3981 | 1 ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 ∘ ccom 5642 Rel wrel 5643 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 “s cimas 17467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-imas 17471 |
| This theorem is referenced by: xpsless 17541 |
| Copyright terms: Public domain | W3C validator |