| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasless | Structured version Visualization version GIF version | ||
| Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasless.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasless.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasless.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasless.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasless.l | ⊢ ≤ = (le‘𝑈) |
| Ref | Expression |
|---|---|
| imasless | ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasless.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasless.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasless.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imasless.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | eqid 2729 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
| 6 | imasless.l | . . 3 ⊢ ≤ = (le‘𝑈) | |
| 7 | 1, 2, 3, 4, 5, 6 | imasle 17445 | . 2 ⊢ (𝜑 → ≤ = ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
| 8 | relco 6063 | . . . 4 ⊢ Rel ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) | |
| 9 | relssdmrn 6221 | . . . 4 ⊢ (Rel ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹))) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
| 11 | dmco 6207 | . . . . 5 ⊢ dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) = (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) | |
| 12 | fof 6740 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
| 13 | frel 6661 | . . . . . . . . 9 ⊢ (𝐹:𝑉⟶𝐵 → Rel 𝐹) | |
| 14 | 3, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → Rel 𝐹) |
| 15 | dfrel2 6142 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 16 | 14, 15 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → ◡◡𝐹 = 𝐹) |
| 17 | 16 | imaeq1d 6014 | . . . . . 6 ⊢ (𝜑 → (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) = (𝐹 “ dom (𝐹 ∘ (le‘𝑅)))) |
| 18 | imassrn 6026 | . . . . . . 7 ⊢ (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ ran 𝐹 | |
| 19 | forn 6743 | . . . . . . . 8 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 20 | 3, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
| 21 | 18, 20 | sseqtrid 3980 | . . . . . 6 ⊢ (𝜑 → (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵) |
| 22 | 17, 21 | eqsstrd 3972 | . . . . 5 ⊢ (𝜑 → (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵) |
| 23 | 11, 22 | eqsstrid 3976 | . . . 4 ⊢ (𝜑 → dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) |
| 24 | rncoss 5922 | . . . . 5 ⊢ ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ ran (𝐹 ∘ (le‘𝑅)) | |
| 25 | rnco2 6206 | . . . . . 6 ⊢ ran (𝐹 ∘ (le‘𝑅)) = (𝐹 “ ran (le‘𝑅)) | |
| 26 | imassrn 6026 | . . . . . . 7 ⊢ (𝐹 “ ran (le‘𝑅)) ⊆ ran 𝐹 | |
| 27 | 26, 20 | sseqtrid 3980 | . . . . . 6 ⊢ (𝜑 → (𝐹 “ ran (le‘𝑅)) ⊆ 𝐵) |
| 28 | 25, 27 | eqsstrid 3976 | . . . . 5 ⊢ (𝜑 → ran (𝐹 ∘ (le‘𝑅)) ⊆ 𝐵) |
| 29 | 24, 28 | sstrid 3949 | . . . 4 ⊢ (𝜑 → ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) |
| 30 | xpss12 5638 | . . . 4 ⊢ ((dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵 ∧ ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) → (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) ⊆ (𝐵 × 𝐵)) | |
| 31 | 23, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) ⊆ (𝐵 × 𝐵)) |
| 32 | 10, 31 | sstrid 3949 | . 2 ⊢ (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (𝐵 × 𝐵)) |
| 33 | 7, 32 | eqsstrd 3972 | 1 ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ran crn 5624 “ cima 5626 ∘ ccom 5627 Rel wrel 5628 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 lecple 17186 “s cimas 17426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-imas 17430 |
| This theorem is referenced by: xpsless 17500 |
| Copyright terms: Public domain | W3C validator |