![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasless | Structured version Visualization version GIF version |
Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
imasless.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasless.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasless.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasless.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasless.l | ⊢ ≤ = (le‘𝑈) |
Ref | Expression |
---|---|
imasless | ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasless.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasless.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasless.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imasless.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | eqid 2794 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
6 | imasless.l | . . 3 ⊢ ≤ = (le‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imasle 16625 | . 2 ⊢ (𝜑 → ≤ = ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
8 | relco 5975 | . . . 4 ⊢ Rel ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) | |
9 | relssdmrn 5999 | . . . 4 ⊢ (Rel ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
11 | dmco 5985 | . . . . 5 ⊢ dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) = (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) | |
12 | fof 6461 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
13 | frel 6390 | . . . . . . . . 9 ⊢ (𝐹:𝑉⟶𝐵 → Rel 𝐹) | |
14 | 3, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → Rel 𝐹) |
15 | dfrel2 5925 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
16 | 14, 15 | sylib 219 | . . . . . . 7 ⊢ (𝜑 → ◡◡𝐹 = 𝐹) |
17 | 16 | imaeq1d 5808 | . . . . . 6 ⊢ (𝜑 → (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) = (𝐹 “ dom (𝐹 ∘ (le‘𝑅)))) |
18 | imassrn 5820 | . . . . . . 7 ⊢ (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ ran 𝐹 | |
19 | forn 6464 | . . . . . . . 8 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
20 | 3, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
21 | 18, 20 | sseqtrid 3942 | . . . . . 6 ⊢ (𝜑 → (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵) |
22 | 17, 21 | eqsstrd 3928 | . . . . 5 ⊢ (𝜑 → (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵) |
23 | 11, 22 | eqsstrid 3938 | . . . 4 ⊢ (𝜑 → dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) |
24 | rncoss 5727 | . . . . 5 ⊢ ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ ran (𝐹 ∘ (le‘𝑅)) | |
25 | rnco2 5984 | . . . . . 6 ⊢ ran (𝐹 ∘ (le‘𝑅)) = (𝐹 “ ran (le‘𝑅)) | |
26 | imassrn 5820 | . . . . . . 7 ⊢ (𝐹 “ ran (le‘𝑅)) ⊆ ran 𝐹 | |
27 | 26, 20 | sseqtrid 3942 | . . . . . 6 ⊢ (𝜑 → (𝐹 “ ran (le‘𝑅)) ⊆ 𝐵) |
28 | 25, 27 | eqsstrid 3938 | . . . . 5 ⊢ (𝜑 → ran (𝐹 ∘ (le‘𝑅)) ⊆ 𝐵) |
29 | 24, 28 | sstrid 3902 | . . . 4 ⊢ (𝜑 → ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) |
30 | xpss12 5461 | . . . 4 ⊢ ((dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵 ∧ ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) → (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) ⊆ (𝐵 × 𝐵)) | |
31 | 23, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) ⊆ (𝐵 × 𝐵)) |
32 | 10, 31 | sstrid 3902 | . 2 ⊢ (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (𝐵 × 𝐵)) |
33 | 7, 32 | eqsstrd 3928 | 1 ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2080 ⊆ wss 3861 × cxp 5444 ◡ccnv 5445 dom cdm 5446 ran crn 5447 “ cima 5449 ∘ ccom 5450 Rel wrel 5451 ⟶wf 6224 –onto→wfo 6226 ‘cfv 6228 (class class class)co 7019 Basecbs 16312 lecple 16401 “s cimas 16606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-oadd 7960 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-sup 8755 df-inf 8756 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-nn 11489 df-2 11550 df-3 11551 df-4 11552 df-5 11553 df-6 11554 df-7 11555 df-8 11556 df-9 11557 df-n0 11748 df-z 11832 df-dec 11949 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-plusg 16407 df-mulr 16408 df-sca 16410 df-vsca 16411 df-ip 16412 df-tset 16413 df-ple 16414 df-ds 16416 df-imas 16610 |
This theorem is referenced by: xpsless 16680 |
Copyright terms: Public domain | W3C validator |