MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasless Structured version   Visualization version   GIF version

Theorem imasless 17554
Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasless.u (𝜑𝑈 = (𝐹s 𝑅))
imasless.v (𝜑𝑉 = (Base‘𝑅))
imasless.f (𝜑𝐹:𝑉onto𝐵)
imasless.r (𝜑𝑅𝑍)
imasless.l = (le‘𝑈)
Assertion
Ref Expression
imasless (𝜑 ⊆ (𝐵 × 𝐵))

Proof of Theorem imasless
StepHypRef Expression
1 imasless.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasless.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasless.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasless.r . . 3 (𝜑𝑅𝑍)
5 eqid 2735 . . 3 (le‘𝑅) = (le‘𝑅)
6 imasless.l . . 3 = (le‘𝑈)
71, 2, 3, 4, 5, 6imasle 17537 . 2 (𝜑 = ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹))
8 relco 6095 . . . 4 Rel ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)
9 relssdmrn 6257 . . . 4 (Rel ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) → ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)))
108, 9ax-mp 5 . . 3 ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹))
11 dmco 6243 . . . . 5 dom ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) = (𝐹 “ dom (𝐹 ∘ (le‘𝑅)))
12 fof 6790 . . . . . . . . 9 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
13 frel 6711 . . . . . . . . 9 (𝐹:𝑉𝐵 → Rel 𝐹)
143, 12, 133syl 18 . . . . . . . 8 (𝜑 → Rel 𝐹)
15 dfrel2 6178 . . . . . . . 8 (Rel 𝐹𝐹 = 𝐹)
1614, 15sylib 218 . . . . . . 7 (𝜑𝐹 = 𝐹)
1716imaeq1d 6046 . . . . . 6 (𝜑 → (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) = (𝐹 “ dom (𝐹 ∘ (le‘𝑅))))
18 imassrn 6058 . . . . . . 7 (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ ran 𝐹
19 forn 6793 . . . . . . . 8 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
203, 19syl 17 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐵)
2118, 20sseqtrid 4001 . . . . . 6 (𝜑 → (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵)
2217, 21eqsstrd 3993 . . . . 5 (𝜑 → (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵)
2311, 22eqsstrid 3997 . . . 4 (𝜑 → dom ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) ⊆ 𝐵)
24 rncoss 5955 . . . . 5 ran ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) ⊆ ran (𝐹 ∘ (le‘𝑅))
25 rnco2 6242 . . . . . 6 ran (𝐹 ∘ (le‘𝑅)) = (𝐹 “ ran (le‘𝑅))
26 imassrn 6058 . . . . . . 7 (𝐹 “ ran (le‘𝑅)) ⊆ ran 𝐹
2726, 20sseqtrid 4001 . . . . . 6 (𝜑 → (𝐹 “ ran (le‘𝑅)) ⊆ 𝐵)
2825, 27eqsstrid 3997 . . . . 5 (𝜑 → ran (𝐹 ∘ (le‘𝑅)) ⊆ 𝐵)
2924, 28sstrid 3970 . . . 4 (𝜑 → ran ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) ⊆ 𝐵)
30 xpss12 5669 . . . 4 ((dom ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) ⊆ 𝐵 ∧ ran ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) ⊆ 𝐵) → (dom ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)) ⊆ (𝐵 × 𝐵))
3123, 29, 30syl2anc 584 . . 3 (𝜑 → (dom ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)) ⊆ (𝐵 × 𝐵))
3210, 31sstrid 3970 . 2 (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) ⊆ (𝐵 × 𝐵))
337, 32eqsstrd 3993 1 (𝜑 ⊆ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657  ccom 5658  Rel wrel 5659  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  s cimas 17518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-imas 17522
This theorem is referenced by:  xpsless  17592
  Copyright terms: Public domain W3C validator