Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasless | Structured version Visualization version GIF version |
Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
imasless.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasless.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasless.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasless.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasless.l | ⊢ ≤ = (le‘𝑈) |
Ref | Expression |
---|---|
imasless | ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasless.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasless.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasless.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imasless.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | eqid 2737 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
6 | imasless.l | . . 3 ⊢ ≤ = (le‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imasle 17331 | . 2 ⊢ (𝜑 → ≤ = ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
8 | relco 6050 | . . . 4 ⊢ Rel ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) | |
9 | relssdmrn 6210 | . . . 4 ⊢ (Rel ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
11 | dmco 6196 | . . . . 5 ⊢ dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) = (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) | |
12 | fof 6743 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
13 | frel 6660 | . . . . . . . . 9 ⊢ (𝐹:𝑉⟶𝐵 → Rel 𝐹) | |
14 | 3, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → Rel 𝐹) |
15 | dfrel2 6131 | . . . . . . . 8 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
16 | 14, 15 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → ◡◡𝐹 = 𝐹) |
17 | 16 | imaeq1d 6002 | . . . . . 6 ⊢ (𝜑 → (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) = (𝐹 “ dom (𝐹 ∘ (le‘𝑅)))) |
18 | imassrn 6014 | . . . . . . 7 ⊢ (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ ran 𝐹 | |
19 | forn 6746 | . . . . . . . 8 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
20 | 3, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
21 | 18, 20 | sseqtrid 3987 | . . . . . 6 ⊢ (𝜑 → (𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵) |
22 | 17, 21 | eqsstrd 3973 | . . . . 5 ⊢ (𝜑 → (◡◡𝐹 “ dom (𝐹 ∘ (le‘𝑅))) ⊆ 𝐵) |
23 | 11, 22 | eqsstrid 3983 | . . . 4 ⊢ (𝜑 → dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) |
24 | rncoss 5917 | . . . . 5 ⊢ ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ ran (𝐹 ∘ (le‘𝑅)) | |
25 | rnco2 6195 | . . . . . 6 ⊢ ran (𝐹 ∘ (le‘𝑅)) = (𝐹 “ ran (le‘𝑅)) | |
26 | imassrn 6014 | . . . . . . 7 ⊢ (𝐹 “ ran (le‘𝑅)) ⊆ ran 𝐹 | |
27 | 26, 20 | sseqtrid 3987 | . . . . . 6 ⊢ (𝜑 → (𝐹 “ ran (le‘𝑅)) ⊆ 𝐵) |
28 | 25, 27 | eqsstrid 3983 | . . . . 5 ⊢ (𝜑 → ran (𝐹 ∘ (le‘𝑅)) ⊆ 𝐵) |
29 | 24, 28 | sstrid 3946 | . . . 4 ⊢ (𝜑 → ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) |
30 | xpss12 5639 | . . . 4 ⊢ ((dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵 ∧ ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ 𝐵) → (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) ⊆ (𝐵 × 𝐵)) | |
31 | 23, 29, 30 | syl2anc 585 | . . 3 ⊢ (𝜑 → (dom ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) × ran ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) ⊆ (𝐵 × 𝐵)) |
32 | 10, 31 | sstrid 3946 | . 2 ⊢ (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) ⊆ (𝐵 × 𝐵)) |
33 | 7, 32 | eqsstrd 3973 | 1 ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3901 × cxp 5622 ◡ccnv 5623 dom cdm 5624 ran crn 5625 “ cima 5627 ∘ ccom 5628 Rel wrel 5629 ⟶wf 6479 –onto→wfo 6481 ‘cfv 6483 (class class class)co 7341 Basecbs 17009 lecple 17066 “s cimas 17312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-sup 9303 df-inf 9304 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-fz 13345 df-struct 16945 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-imas 17316 |
This theorem is referenced by: xpsless 17386 |
Copyright terms: Public domain | W3C validator |