![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasless | Structured version Visualization version GIF version |
Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
imasless.u | β’ (π β π = (πΉ βs π )) |
imasless.v | β’ (π β π = (Baseβπ )) |
imasless.f | β’ (π β πΉ:πβontoβπ΅) |
imasless.r | β’ (π β π β π) |
imasless.l | β’ β€ = (leβπ) |
Ref | Expression |
---|---|
imasless | β’ (π β β€ β (π΅ Γ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasless.u | . . 3 β’ (π β π = (πΉ βs π )) | |
2 | imasless.v | . . 3 β’ (π β π = (Baseβπ )) | |
3 | imasless.f | . . 3 β’ (π β πΉ:πβontoβπ΅) | |
4 | imasless.r | . . 3 β’ (π β π β π) | |
5 | eqid 2724 | . . 3 β’ (leβπ ) = (leβπ ) | |
6 | imasless.l | . . 3 β’ β€ = (leβπ) | |
7 | 1, 2, 3, 4, 5, 6 | imasle 17467 | . 2 β’ (π β β€ = ((πΉ β (leβπ )) β β‘πΉ)) |
8 | relco 6097 | . . . 4 β’ Rel ((πΉ β (leβπ )) β β‘πΉ) | |
9 | relssdmrn 6257 | . . . 4 β’ (Rel ((πΉ β (leβπ )) β β‘πΉ) β ((πΉ β (leβπ )) β β‘πΉ) β (dom ((πΉ β (leβπ )) β β‘πΉ) Γ ran ((πΉ β (leβπ )) β β‘πΉ))) | |
10 | 8, 9 | ax-mp 5 | . . 3 β’ ((πΉ β (leβπ )) β β‘πΉ) β (dom ((πΉ β (leβπ )) β β‘πΉ) Γ ran ((πΉ β (leβπ )) β β‘πΉ)) |
11 | dmco 6243 | . . . . 5 β’ dom ((πΉ β (leβπ )) β β‘πΉ) = (β‘β‘πΉ β dom (πΉ β (leβπ ))) | |
12 | fof 6795 | . . . . . . . . 9 β’ (πΉ:πβontoβπ΅ β πΉ:πβΆπ΅) | |
13 | frel 6712 | . . . . . . . . 9 β’ (πΉ:πβΆπ΅ β Rel πΉ) | |
14 | 3, 12, 13 | 3syl 18 | . . . . . . . 8 β’ (π β Rel πΉ) |
15 | dfrel2 6178 | . . . . . . . 8 β’ (Rel πΉ β β‘β‘πΉ = πΉ) | |
16 | 14, 15 | sylib 217 | . . . . . . 7 β’ (π β β‘β‘πΉ = πΉ) |
17 | 16 | imaeq1d 6048 | . . . . . 6 β’ (π β (β‘β‘πΉ β dom (πΉ β (leβπ ))) = (πΉ β dom (πΉ β (leβπ )))) |
18 | imassrn 6060 | . . . . . . 7 β’ (πΉ β dom (πΉ β (leβπ ))) β ran πΉ | |
19 | forn 6798 | . . . . . . . 8 β’ (πΉ:πβontoβπ΅ β ran πΉ = π΅) | |
20 | 3, 19 | syl 17 | . . . . . . 7 β’ (π β ran πΉ = π΅) |
21 | 18, 20 | sseqtrid 4026 | . . . . . 6 β’ (π β (πΉ β dom (πΉ β (leβπ ))) β π΅) |
22 | 17, 21 | eqsstrd 4012 | . . . . 5 β’ (π β (β‘β‘πΉ β dom (πΉ β (leβπ ))) β π΅) |
23 | 11, 22 | eqsstrid 4022 | . . . 4 β’ (π β dom ((πΉ β (leβπ )) β β‘πΉ) β π΅) |
24 | rncoss 5961 | . . . . 5 β’ ran ((πΉ β (leβπ )) β β‘πΉ) β ran (πΉ β (leβπ )) | |
25 | rnco2 6242 | . . . . . 6 β’ ran (πΉ β (leβπ )) = (πΉ β ran (leβπ )) | |
26 | imassrn 6060 | . . . . . . 7 β’ (πΉ β ran (leβπ )) β ran πΉ | |
27 | 26, 20 | sseqtrid 4026 | . . . . . 6 β’ (π β (πΉ β ran (leβπ )) β π΅) |
28 | 25, 27 | eqsstrid 4022 | . . . . 5 β’ (π β ran (πΉ β (leβπ )) β π΅) |
29 | 24, 28 | sstrid 3985 | . . . 4 β’ (π β ran ((πΉ β (leβπ )) β β‘πΉ) β π΅) |
30 | xpss12 5681 | . . . 4 β’ ((dom ((πΉ β (leβπ )) β β‘πΉ) β π΅ β§ ran ((πΉ β (leβπ )) β β‘πΉ) β π΅) β (dom ((πΉ β (leβπ )) β β‘πΉ) Γ ran ((πΉ β (leβπ )) β β‘πΉ)) β (π΅ Γ π΅)) | |
31 | 23, 29, 30 | syl2anc 583 | . . 3 β’ (π β (dom ((πΉ β (leβπ )) β β‘πΉ) Γ ran ((πΉ β (leβπ )) β β‘πΉ)) β (π΅ Γ π΅)) |
32 | 10, 31 | sstrid 3985 | . 2 β’ (π β ((πΉ β (leβπ )) β β‘πΉ) β (π΅ Γ π΅)) |
33 | 7, 32 | eqsstrd 4012 | 1 β’ (π β β€ β (π΅ Γ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3940 Γ cxp 5664 β‘ccnv 5665 dom cdm 5666 ran crn 5667 β cima 5669 β ccom 5670 Rel wrel 5671 βΆwf 6529 βontoβwfo 6531 βcfv 6533 (class class class)co 7401 Basecbs 17142 lecple 17202 βs cimas 17448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-inf 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17078 df-slot 17113 df-ndx 17125 df-base 17143 df-plusg 17208 df-mulr 17209 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ds 17217 df-imas 17452 |
This theorem is referenced by: xpsless 17522 |
Copyright terms: Public domain | W3C validator |