| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeocnv | Structured version Visualization version GIF version | ||
| Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeocnv | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnvcn 23646 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
| 2 | hmeocn 23645 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | cnf 23131 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 6 | frel 6657 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → Rel 𝐹) | |
| 7 | 2, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → Rel 𝐹) |
| 8 | dfrel2 6138 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 = 𝐹) |
| 10 | 9, 2 | eqeltrd 2828 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 ∈ (𝐽 Cn 𝐾)) |
| 11 | ishmeo 23644 | . 2 ⊢ (◡𝐹 ∈ (𝐾Homeo𝐽) ↔ (◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ ◡◡𝐹 ∈ (𝐽 Cn 𝐾))) | |
| 12 | 1, 10, 11 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 ◡ccnv 5618 Rel wrel 5624 ⟶wf 6478 (class class class)co 7349 Cn ccn 23109 Homeochmeo 23638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-top 22779 df-topon 22796 df-cn 23112 df-hmeo 23640 |
| This theorem is referenced by: hmeocnvb 23659 hmphsym 23667 xpstopnlem2 23696 |
| Copyright terms: Public domain | W3C validator |