MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnv Structured version   Visualization version   GIF version

Theorem hmeocnv 23786
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocnv (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))

Proof of Theorem hmeocnv
StepHypRef Expression
1 hmeocnvcn 23785 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2 hmeocn 23784 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 eqid 2735 . . . . . 6 𝐽 = 𝐽
4 eqid 2735 . . . . . 6 𝐾 = 𝐾
53, 4cnf 23270 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
6 frel 6742 . . . . 5 (𝐹: 𝐽 𝐾 → Rel 𝐹)
72, 5, 63syl 18 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → Rel 𝐹)
8 dfrel2 6211 . . . 4 (Rel 𝐹𝐹 = 𝐹)
97, 8sylib 218 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 = 𝐹)
109, 2eqeltrd 2839 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
11 ishmeo 23783 . 2 (𝐹 ∈ (𝐾Homeo𝐽) ↔ (𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))
121, 10, 11sylanbrc 583 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   cuni 4912  ccnv 5688  Rel wrel 5694  wf 6559  (class class class)co 7431   Cn ccn 23248  Homeochmeo 23777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-top 22916  df-topon 22933  df-cn 23251  df-hmeo 23779
This theorem is referenced by:  hmeocnvb  23798  hmphsym  23806  xpstopnlem2  23835
  Copyright terms: Public domain W3C validator