MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnv Structured version   Visualization version   GIF version

Theorem hmeocnv 22370
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocnv (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))

Proof of Theorem hmeocnv
StepHypRef Expression
1 hmeocnvcn 22369 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2 hmeocn 22368 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 eqid 2821 . . . . . 6 𝐽 = 𝐽
4 eqid 2821 . . . . . 6 𝐾 = 𝐾
53, 4cnf 21854 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
6 frel 6519 . . . . 5 (𝐹: 𝐽 𝐾 → Rel 𝐹)
72, 5, 63syl 18 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → Rel 𝐹)
8 dfrel2 6046 . . . 4 (Rel 𝐹𝐹 = 𝐹)
97, 8sylib 220 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 = 𝐹)
109, 2eqeltrd 2913 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
11 ishmeo 22367 . 2 (𝐹 ∈ (𝐾Homeo𝐽) ↔ (𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))
121, 10, 11sylanbrc 585 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114   cuni 4838  ccnv 5554  Rel wrel 5560  wf 6351  (class class class)co 7156   Cn ccn 21832  Homeochmeo 22361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-top 21502  df-topon 21519  df-cn 21835  df-hmeo 22363
This theorem is referenced by:  hmeocnvb  22382  hmphsym  22390  xpstopnlem2  22419
  Copyright terms: Public domain W3C validator