Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmeocnv | Structured version Visualization version GIF version |
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeocnv | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 23019 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | hmeocn 23018 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
3 | eqid 2736 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | eqid 2736 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
5 | 3, 4 | cnf 22504 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | frel 6657 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → Rel 𝐹) | |
7 | 2, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → Rel 𝐹) |
8 | dfrel2 6128 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
9 | 7, 8 | sylib 217 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 = 𝐹) |
10 | 9, 2 | eqeltrd 2837 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 ∈ (𝐽 Cn 𝐾)) |
11 | ishmeo 23017 | . 2 ⊢ (◡𝐹 ∈ (𝐾Homeo𝐽) ↔ (◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ ◡◡𝐹 ∈ (𝐽 Cn 𝐾))) | |
12 | 1, 10, 11 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cuni 4853 ◡ccnv 5620 Rel wrel 5626 ⟶wf 6476 (class class class)co 7338 Cn ccn 22482 Homeochmeo 23011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-map 8689 df-top 22150 df-topon 22167 df-cn 22485 df-hmeo 23013 |
This theorem is referenced by: hmeocnvb 23032 hmphsym 23040 xpstopnlem2 23069 |
Copyright terms: Public domain | W3C validator |