| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeocnv | Structured version Visualization version GIF version | ||
| Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeocnv | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnvcn 23676 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
| 2 | hmeocn 23675 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | cnf 23161 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 6 | frel 6656 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → Rel 𝐹) | |
| 7 | 2, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → Rel 𝐹) |
| 8 | dfrel2 6136 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 = 𝐹) |
| 10 | 9, 2 | eqeltrd 2831 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 ∈ (𝐽 Cn 𝐾)) |
| 11 | ishmeo 23674 | . 2 ⊢ (◡𝐹 ∈ (𝐾Homeo𝐽) ↔ (◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ ◡◡𝐹 ∈ (𝐽 Cn 𝐾))) | |
| 12 | 1, 10, 11 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 ◡ccnv 5613 Rel wrel 5619 ⟶wf 6477 (class class class)co 7346 Cn ccn 23139 Homeochmeo 23668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-top 22809 df-topon 22826 df-cn 23142 df-hmeo 23670 |
| This theorem is referenced by: hmeocnvb 23689 hmphsym 23697 xpstopnlem2 23726 |
| Copyright terms: Public domain | W3C validator |