![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mattpostpos | Structured version Visualization version GIF version |
Description: The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018.) |
Ref | Expression |
---|---|
mattposcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mattposcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
mattpostpos | ⊢ (𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mattposcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | mattposcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 2, 3 | matbas2i 22145 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
5 | elmapi 8846 | . . . 4 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
7 | frel 6723 | . . 3 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → Rel 𝑀) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝑀 ∈ 𝐵 → Rel 𝑀) |
9 | relxp 5695 | . . 3 ⊢ Rel (𝑁 × 𝑁) | |
10 | 6 | fdmd 6729 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → dom 𝑀 = (𝑁 × 𝑁)) |
11 | 10 | releqd 5779 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (Rel dom 𝑀 ↔ Rel (𝑁 × 𝑁))) |
12 | 9, 11 | mpbiri 257 | . 2 ⊢ (𝑀 ∈ 𝐵 → Rel dom 𝑀) |
13 | tpostpos2 8235 | . 2 ⊢ ((Rel 𝑀 ∧ Rel dom 𝑀) → tpos tpos 𝑀 = 𝑀) | |
14 | 8, 12, 13 | syl2anc 583 | 1 ⊢ (𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 × cxp 5675 dom cdm 5677 Rel wrel 5682 ⟶wf 6540 ‘cfv 6544 (class class class)co 7412 tpos ctpos 8213 ↑m cmap 8823 Basecbs 17149 Mat cmat 22128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-prds 17398 df-pws 17400 df-sra 20931 df-rgmod 20932 df-dsmm 21507 df-frlm 21522 df-mat 22129 |
This theorem is referenced by: madulid 22368 |
Copyright terms: Public domain | W3C validator |