| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mattpostpos | Structured version Visualization version GIF version | ||
| Description: The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018.) |
| Ref | Expression |
|---|---|
| mattposcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mattposcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| mattpostpos | ⊢ (𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | mattposcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | 1, 2, 3 | matbas2i 22330 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 5 | elmapi 8768 | . . . 4 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
| 7 | frel 6652 | . . 3 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → Rel 𝑀) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝑀 ∈ 𝐵 → Rel 𝑀) |
| 9 | relxp 5632 | . . 3 ⊢ Rel (𝑁 × 𝑁) | |
| 10 | 6 | fdmd 6657 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → dom 𝑀 = (𝑁 × 𝑁)) |
| 11 | 10 | releqd 5717 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (Rel dom 𝑀 ↔ Rel (𝑁 × 𝑁))) |
| 12 | 9, 11 | mpbiri 258 | . 2 ⊢ (𝑀 ∈ 𝐵 → Rel dom 𝑀) |
| 13 | tpostpos2 8172 | . 2 ⊢ ((Rel 𝑀 ∧ Rel dom 𝑀) → tpos tpos 𝑀 = 𝑀) | |
| 14 | 8, 12, 13 | syl2anc 584 | 1 ⊢ (𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 × cxp 5612 dom cdm 5614 Rel wrel 5619 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 tpos ctpos 8150 ↑m cmap 8745 Basecbs 17112 Mat cmat 22315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-hom 17177 df-cco 17178 df-0g 17337 df-prds 17343 df-pws 17345 df-sra 21100 df-rgmod 21101 df-dsmm 21662 df-frlm 21677 df-mat 22316 |
| This theorem is referenced by: madulid 22553 |
| Copyright terms: Public domain | W3C validator |