Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsetsspwxp | Structured version Visualization version GIF version |
Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsspwxp | ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6628 | . . 3 ⊢ (𝑔:𝐴⟶𝐵 → 𝑔 ⊆ (𝐴 × 𝐵)) | |
2 | vex 3436 | . . . 4 ⊢ 𝑔 ∈ V | |
3 | feq1 6581 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶𝐵 ↔ 𝑔:𝐴⟶𝐵)) | |
4 | 2, 3 | elab 3609 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑔:𝐴⟶𝐵) |
5 | velpw 4538 | . . 3 ⊢ (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵)) | |
6 | 1, 4, 5 | 3imtr4i 292 | . 2 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵)) |
7 | 6 | ssriv 3925 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2715 ⊆ wss 3887 𝒫 cpw 4533 × cxp 5587 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: sticksstones22 40124 |
Copyright terms: Public domain | W3C validator |