MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetsspwxp Structured version   Visualization version   GIF version

Theorem fsetsspwxp 8826
Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsspwxp {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fsetsspwxp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6715 . . 3 (𝑔:𝐴𝐵𝑔 ⊆ (𝐴 × 𝐵))
2 vex 3451 . . . 4 𝑔 ∈ V
3 feq1 6666 . . . 4 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
42, 3elab 3646 . . 3 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↔ 𝑔:𝐴𝐵)
5 velpw 4568 . . 3 (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵))
61, 4, 53imtr4i 292 . 2 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵))
76ssriv 3950 1 {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2707  wss 3914  𝒫 cpw 4563   × cxp 5636  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  sticksstones22  42156
  Copyright terms: Public domain W3C validator