MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetsspwxp Structured version   Visualization version   GIF version

Theorem fsetsspwxp 8641
Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsspwxp {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fsetsspwxp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6628 . . 3 (𝑔:𝐴𝐵𝑔 ⊆ (𝐴 × 𝐵))
2 vex 3436 . . . 4 𝑔 ∈ V
3 feq1 6581 . . . 4 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
42, 3elab 3609 . . 3 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↔ 𝑔:𝐴𝐵)
5 velpw 4538 . . 3 (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵))
61, 4, 53imtr4i 292 . 2 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵))
76ssriv 3925 1 {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2715  wss 3887  𝒫 cpw 4533   × cxp 5587  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  sticksstones22  40124
  Copyright terms: Public domain W3C validator