Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsetsspwxp | Structured version Visualization version GIF version |
Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsspwxp | ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6612 | . . 3 ⊢ (𝑔:𝐴⟶𝐵 → 𝑔 ⊆ (𝐴 × 𝐵)) | |
2 | vex 3426 | . . . 4 ⊢ 𝑔 ∈ V | |
3 | feq1 6565 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶𝐵 ↔ 𝑔:𝐴⟶𝐵)) | |
4 | 2, 3 | elab 3602 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑔:𝐴⟶𝐵) |
5 | velpw 4535 | . . 3 ⊢ (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵)) | |
6 | 1, 4, 5 | 3imtr4i 291 | . 2 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵)) |
7 | 6 | ssriv 3921 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2715 ⊆ wss 3883 𝒫 cpw 4530 × cxp 5578 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: sticksstones22 40052 |
Copyright terms: Public domain | W3C validator |