MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetsspwxp Structured version   Visualization version   GIF version

Theorem fsetsspwxp 8783
Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsspwxp {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fsetsspwxp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6683 . . 3 (𝑔:𝐴𝐵𝑔 ⊆ (𝐴 × 𝐵))
2 vex 3441 . . . 4 𝑔 ∈ V
3 feq1 6634 . . . 4 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
42, 3elab 3631 . . 3 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↔ 𝑔:𝐴𝐵)
5 velpw 4554 . . 3 (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵))
61, 4, 53imtr4i 292 . 2 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵))
76ssriv 3934 1 {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  {cab 2711  wss 3898  𝒫 cpw 4549   × cxp 5617  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  sticksstones22  42281
  Copyright terms: Public domain W3C validator