| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsetsspwxp | Structured version Visualization version GIF version | ||
| Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| fsetsspwxp | ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssxp 6762 | . . 3 ⊢ (𝑔:𝐴⟶𝐵 → 𝑔 ⊆ (𝐴 × 𝐵)) | |
| 2 | vex 3483 | . . . 4 ⊢ 𝑔 ∈ V | |
| 3 | feq1 6715 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶𝐵 ↔ 𝑔:𝐴⟶𝐵)) | |
| 4 | 2, 3 | elab 3678 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑔:𝐴⟶𝐵) |
| 5 | velpw 4604 | . . 3 ⊢ (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵)) | |
| 6 | 1, 4, 5 | 3imtr4i 292 | . 2 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵)) |
| 7 | 6 | ssriv 3986 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 {cab 2713 ⊆ wss 3950 𝒫 cpw 4599 × cxp 5682 ⟶wf 6556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-fun 6562 df-fn 6563 df-f 6564 |
| This theorem is referenced by: sticksstones22 42170 |
| Copyright terms: Public domain | W3C validator |