MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetsspwxp Structured version   Visualization version   GIF version

Theorem fsetsspwxp 8847
Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsspwxp {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fsetsspwxp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6746 . . 3 (𝑔:𝐴𝐵𝑔 ⊆ (𝐴 × 𝐵))
2 vex 3479 . . . 4 𝑔 ∈ V
3 feq1 6699 . . . 4 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
42, 3elab 3669 . . 3 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↔ 𝑔:𝐴𝐵)
5 velpw 4608 . . 3 (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵))
61, 4, 53imtr4i 292 . 2 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵))
76ssriv 3987 1 {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  {cab 2710  wss 3949  𝒫 cpw 4603   × cxp 5675  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by:  sticksstones22  40984
  Copyright terms: Public domain W3C validator