![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsetsspwxp | Structured version Visualization version GIF version |
Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsspwxp | ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6739 | . . 3 ⊢ (𝑔:𝐴⟶𝐵 → 𝑔 ⊆ (𝐴 × 𝐵)) | |
2 | vex 3472 | . . . 4 ⊢ 𝑔 ∈ V | |
3 | feq1 6692 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶𝐵 ↔ 𝑔:𝐴⟶𝐵)) | |
4 | 2, 3 | elab 3663 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑔:𝐴⟶𝐵) |
5 | velpw 4602 | . . 3 ⊢ (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵)) | |
6 | 1, 4, 5 | 3imtr4i 292 | . 2 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵)) |
7 | 6 | ssriv 3981 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 {cab 2703 ⊆ wss 3943 𝒫 cpw 4597 × cxp 5667 ⟶wf 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-fun 6539 df-fn 6540 df-f 6541 |
This theorem is referenced by: sticksstones22 41546 |
Copyright terms: Public domain | W3C validator |