![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsetsspwxp | Structured version Visualization version GIF version |
Description: The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsspwxp | ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6697 | . . 3 ⊢ (𝑔:𝐴⟶𝐵 → 𝑔 ⊆ (𝐴 × 𝐵)) | |
2 | vex 3448 | . . . 4 ⊢ 𝑔 ∈ V | |
3 | feq1 6650 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶𝐵 ↔ 𝑔:𝐴⟶𝐵)) | |
4 | 2, 3 | elab 3631 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑔:𝐴⟶𝐵) |
5 | velpw 4566 | . . 3 ⊢ (𝑔 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑔 ⊆ (𝐴 × 𝐵)) | |
6 | 1, 4, 5 | 3imtr4i 292 | . 2 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝑔 ∈ 𝒫 (𝐴 × 𝐵)) |
7 | 6 | ssriv 3949 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 {cab 2710 ⊆ wss 3911 𝒫 cpw 4561 × cxp 5632 ⟶wf 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-fun 6499 df-fn 6500 df-f 6501 |
This theorem is referenced by: sticksstones22 40622 |
Copyright terms: Public domain | W3C validator |