MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfoss Structured version   Visualization version   GIF version

Theorem mapfoss 8827
Description: The value of the set exponentiation (𝐵m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.)
Assertion
Ref Expression
mapfoss {𝑓𝑓:𝐴onto𝐵} ⊆ (𝐵m 𝐴)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapfoss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . 4 𝑚 ∈ V
2 foeq1 6770 . . . 4 (𝑓 = 𝑚 → (𝑓:𝐴onto𝐵𝑚:𝐴onto𝐵))
31, 2elab 3648 . . 3 (𝑚 ∈ {𝑓𝑓:𝐴onto𝐵} ↔ 𝑚:𝐴onto𝐵)
4 fof 6774 . . . 4 (𝑚:𝐴onto𝐵𝑚:𝐴𝐵)
5 forn 6777 . . . . . 6 (𝑚:𝐴onto𝐵 → ran 𝑚 = 𝐵)
61rnex 7888 . . . . . 6 ran 𝑚 ∈ V
75, 6eqeltrrdi 2838 . . . . 5 (𝑚:𝐴onto𝐵𝐵 ∈ V)
8 dmfex 7883 . . . . . 6 ((𝑚 ∈ V ∧ 𝑚:𝐴𝐵) → 𝐴 ∈ V)
91, 4, 8sylancr 587 . . . . 5 (𝑚:𝐴onto𝐵𝐴 ∈ V)
107, 9elmapd 8815 . . . 4 (𝑚:𝐴onto𝐵 → (𝑚 ∈ (𝐵m 𝐴) ↔ 𝑚:𝐴𝐵))
114, 10mpbird 257 . . 3 (𝑚:𝐴onto𝐵𝑚 ∈ (𝐵m 𝐴))
123, 11sylbi 217 . 2 (𝑚 ∈ {𝑓𝑓:𝐴onto𝐵} → 𝑚 ∈ (𝐵m 𝐴))
1312ssriv 3952 1 {𝑓𝑓:𝐴onto𝐵} ⊆ (𝐵m 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2708  Vcvv 3450  wss 3916  ran crn 5641  wf 6509  ontowfo 6511  (class class class)co 7389  m cmap 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fo 6519  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-map 8803
This theorem is referenced by:  fosetex  8833
  Copyright terms: Public domain W3C validator