Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapfoss | Structured version Visualization version GIF version |
Description: The value of the set exponentiation (𝐵 ↑m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.) |
Ref | Expression |
---|---|
mapfoss | ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3441 | . . . 4 ⊢ 𝑚 ∈ V | |
2 | foeq1 6714 | . . . 4 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴–onto→𝐵 ↔ 𝑚:𝐴–onto→𝐵)) | |
3 | 1, 2 | elab 3614 | . . 3 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ↔ 𝑚:𝐴–onto→𝐵) |
4 | fof 6718 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚:𝐴⟶𝐵) | |
5 | forn 6721 | . . . . . 6 ⊢ (𝑚:𝐴–onto→𝐵 → ran 𝑚 = 𝐵) | |
6 | 1 | rnex 7791 | . . . . . 6 ⊢ ran 𝑚 ∈ V |
7 | 5, 6 | eqeltrrdi 2846 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐵 ∈ V) |
8 | dmfex 7786 | . . . . . 6 ⊢ ((𝑚 ∈ V ∧ 𝑚:𝐴⟶𝐵) → 𝐴 ∈ V) | |
9 | 1, 4, 8 | sylancr 588 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐴 ∈ V) |
10 | 7, 9 | elmapd 8660 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → (𝑚 ∈ (𝐵 ↑m 𝐴) ↔ 𝑚:𝐴⟶𝐵)) |
11 | 4, 10 | mpbird 257 | . . 3 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
12 | 3, 11 | sylbi 216 | . 2 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
13 | 12 | ssriv 3930 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 {cab 2713 Vcvv 3437 ⊆ wss 3892 ran crn 5601 ⟶wf 6454 –onto→wfo 6456 (class class class)co 7307 ↑m cmap 8646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fo 6464 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-map 8648 |
This theorem is referenced by: fosetex 8677 |
Copyright terms: Public domain | W3C validator |