![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapfoss | Structured version Visualization version GIF version |
Description: The value of the set exponentiation (𝐵 ↑m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.) |
Ref | Expression |
---|---|
mapfoss | ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3466 | . . . 4 ⊢ 𝑚 ∈ V | |
2 | foeq1 6803 | . . . 4 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴–onto→𝐵 ↔ 𝑚:𝐴–onto→𝐵)) | |
3 | 1, 2 | elab 3665 | . . 3 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ↔ 𝑚:𝐴–onto→𝐵) |
4 | fof 6807 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚:𝐴⟶𝐵) | |
5 | forn 6810 | . . . . . 6 ⊢ (𝑚:𝐴–onto→𝐵 → ran 𝑚 = 𝐵) | |
6 | 1 | rnex 7915 | . . . . . 6 ⊢ ran 𝑚 ∈ V |
7 | 5, 6 | eqeltrrdi 2835 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐵 ∈ V) |
8 | dmfex 7910 | . . . . . 6 ⊢ ((𝑚 ∈ V ∧ 𝑚:𝐴⟶𝐵) → 𝐴 ∈ V) | |
9 | 1, 4, 8 | sylancr 585 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐴 ∈ V) |
10 | 7, 9 | elmapd 8861 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → (𝑚 ∈ (𝐵 ↑m 𝐴) ↔ 𝑚:𝐴⟶𝐵)) |
11 | 4, 10 | mpbird 256 | . . 3 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
12 | 3, 11 | sylbi 216 | . 2 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
13 | 12 | ssriv 3982 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 {cab 2703 Vcvv 3462 ⊆ wss 3946 ran crn 5675 ⟶wf 6542 –onto→wfo 6544 (class class class)co 7416 ↑m cmap 8847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-fo 6552 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-map 8849 |
This theorem is referenced by: fosetex 8879 |
Copyright terms: Public domain | W3C validator |