| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfoss | Structured version Visualization version GIF version | ||
| Description: The value of the set exponentiation (𝐵 ↑m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| mapfoss | ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . 4 ⊢ 𝑚 ∈ V | |
| 2 | foeq1 6797 | . . . 4 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴–onto→𝐵 ↔ 𝑚:𝐴–onto→𝐵)) | |
| 3 | 1, 2 | elab 3663 | . . 3 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ↔ 𝑚:𝐴–onto→𝐵) |
| 4 | fof 6801 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚:𝐴⟶𝐵) | |
| 5 | forn 6804 | . . . . . 6 ⊢ (𝑚:𝐴–onto→𝐵 → ran 𝑚 = 𝐵) | |
| 6 | 1 | rnex 7915 | . . . . . 6 ⊢ ran 𝑚 ∈ V |
| 7 | 5, 6 | eqeltrrdi 2842 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐵 ∈ V) |
| 8 | dmfex 7910 | . . . . . 6 ⊢ ((𝑚 ∈ V ∧ 𝑚:𝐴⟶𝐵) → 𝐴 ∈ V) | |
| 9 | 1, 4, 8 | sylancr 587 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐴 ∈ V) |
| 10 | 7, 9 | elmapd 8863 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → (𝑚 ∈ (𝐵 ↑m 𝐴) ↔ 𝑚:𝐴⟶𝐵)) |
| 11 | 4, 10 | mpbird 257 | . . 3 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
| 12 | 3, 11 | sylbi 217 | . 2 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
| 13 | 12 | ssriv 3969 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 {cab 2712 Vcvv 3464 ⊆ wss 3933 ran crn 5668 ⟶wf 6538 –onto→wfo 6540 (class class class)co 7414 ↑m cmap 8849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8851 |
| This theorem is referenced by: fosetex 8881 |
| Copyright terms: Public domain | W3C validator |