MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfoss Structured version   Visualization version   GIF version

Theorem mapfoss 8891
Description: The value of the set exponentiation (𝐵m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.)
Assertion
Ref Expression
mapfoss {𝑓𝑓:𝐴onto𝐵} ⊆ (𝐵m 𝐴)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapfoss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . 4 𝑚 ∈ V
2 foeq1 6817 . . . 4 (𝑓 = 𝑚 → (𝑓:𝐴onto𝐵𝑚:𝐴onto𝐵))
31, 2elab 3681 . . 3 (𝑚 ∈ {𝑓𝑓:𝐴onto𝐵} ↔ 𝑚:𝐴onto𝐵)
4 fof 6821 . . . 4 (𝑚:𝐴onto𝐵𝑚:𝐴𝐵)
5 forn 6824 . . . . . 6 (𝑚:𝐴onto𝐵 → ran 𝑚 = 𝐵)
61rnex 7933 . . . . . 6 ran 𝑚 ∈ V
75, 6eqeltrrdi 2848 . . . . 5 (𝑚:𝐴onto𝐵𝐵 ∈ V)
8 dmfex 7928 . . . . . 6 ((𝑚 ∈ V ∧ 𝑚:𝐴𝐵) → 𝐴 ∈ V)
91, 4, 8sylancr 587 . . . . 5 (𝑚:𝐴onto𝐵𝐴 ∈ V)
107, 9elmapd 8879 . . . 4 (𝑚:𝐴onto𝐵 → (𝑚 ∈ (𝐵m 𝐴) ↔ 𝑚:𝐴𝐵))
114, 10mpbird 257 . . 3 (𝑚:𝐴onto𝐵𝑚 ∈ (𝐵m 𝐴))
123, 11sylbi 217 . 2 (𝑚 ∈ {𝑓𝑓:𝐴onto𝐵} → 𝑚 ∈ (𝐵m 𝐴))
1312ssriv 3999 1 {𝑓𝑓:𝐴onto𝐵} ⊆ (𝐵m 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2712  Vcvv 3478  wss 3963  ran crn 5690  wf 6559  ontowfo 6561  (class class class)co 7431  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867
This theorem is referenced by:  fosetex  8897
  Copyright terms: Public domain W3C validator