MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfoss Structured version   Visualization version   GIF version

Theorem mapfoss 8873
Description: The value of the set exponentiation (𝐵m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.)
Assertion
Ref Expression
mapfoss {𝑓𝑓:𝐴onto𝐵} ⊆ (𝐵m 𝐴)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapfoss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 vex 3466 . . . 4 𝑚 ∈ V
2 foeq1 6803 . . . 4 (𝑓 = 𝑚 → (𝑓:𝐴onto𝐵𝑚:𝐴onto𝐵))
31, 2elab 3665 . . 3 (𝑚 ∈ {𝑓𝑓:𝐴onto𝐵} ↔ 𝑚:𝐴onto𝐵)
4 fof 6807 . . . 4 (𝑚:𝐴onto𝐵𝑚:𝐴𝐵)
5 forn 6810 . . . . . 6 (𝑚:𝐴onto𝐵 → ran 𝑚 = 𝐵)
61rnex 7915 . . . . . 6 ran 𝑚 ∈ V
75, 6eqeltrrdi 2835 . . . . 5 (𝑚:𝐴onto𝐵𝐵 ∈ V)
8 dmfex 7910 . . . . . 6 ((𝑚 ∈ V ∧ 𝑚:𝐴𝐵) → 𝐴 ∈ V)
91, 4, 8sylancr 585 . . . . 5 (𝑚:𝐴onto𝐵𝐴 ∈ V)
107, 9elmapd 8861 . . . 4 (𝑚:𝐴onto𝐵 → (𝑚 ∈ (𝐵m 𝐴) ↔ 𝑚:𝐴𝐵))
114, 10mpbird 256 . . 3 (𝑚:𝐴onto𝐵𝑚 ∈ (𝐵m 𝐴))
123, 11sylbi 216 . 2 (𝑚 ∈ {𝑓𝑓:𝐴onto𝐵} → 𝑚 ∈ (𝐵m 𝐴))
1312ssriv 3982 1 {𝑓𝑓:𝐴onto𝐵} ⊆ (𝐵m 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  {cab 2703  Vcvv 3462  wss 3946  ran crn 5675  wf 6542  ontowfo 6544  (class class class)co 7416  m cmap 8847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fo 6552  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-map 8849
This theorem is referenced by:  fosetex  8879
  Copyright terms: Public domain W3C validator