| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfoss | Structured version Visualization version GIF version | ||
| Description: The value of the set exponentiation (𝐵 ↑m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| mapfoss | ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . 4 ⊢ 𝑚 ∈ V | |
| 2 | foeq1 6770 | . . . 4 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴–onto→𝐵 ↔ 𝑚:𝐴–onto→𝐵)) | |
| 3 | 1, 2 | elab 3648 | . . 3 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ↔ 𝑚:𝐴–onto→𝐵) |
| 4 | fof 6774 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚:𝐴⟶𝐵) | |
| 5 | forn 6777 | . . . . . 6 ⊢ (𝑚:𝐴–onto→𝐵 → ran 𝑚 = 𝐵) | |
| 6 | 1 | rnex 7888 | . . . . . 6 ⊢ ran 𝑚 ∈ V |
| 7 | 5, 6 | eqeltrrdi 2838 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐵 ∈ V) |
| 8 | dmfex 7883 | . . . . . 6 ⊢ ((𝑚 ∈ V ∧ 𝑚:𝐴⟶𝐵) → 𝐴 ∈ V) | |
| 9 | 1, 4, 8 | sylancr 587 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐴 ∈ V) |
| 10 | 7, 9 | elmapd 8815 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → (𝑚 ∈ (𝐵 ↑m 𝐴) ↔ 𝑚:𝐴⟶𝐵)) |
| 11 | 4, 10 | mpbird 257 | . . 3 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
| 12 | 3, 11 | sylbi 217 | . 2 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
| 13 | 12 | ssriv 3952 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2708 Vcvv 3450 ⊆ wss 3916 ran crn 5641 ⟶wf 6509 –onto→wfo 6511 (class class class)co 7389 ↑m cmap 8801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 |
| This theorem is referenced by: fosetex 8833 |
| Copyright terms: Public domain | W3C validator |