| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfoss | Structured version Visualization version GIF version | ||
| Description: The value of the set exponentiation (𝐵 ↑m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| mapfoss | ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑚 ∈ V | |
| 2 | foeq1 6732 | . . . 4 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴–onto→𝐵 ↔ 𝑚:𝐴–onto→𝐵)) | |
| 3 | 1, 2 | elab 3635 | . . 3 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ↔ 𝑚:𝐴–onto→𝐵) |
| 4 | fof 6736 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚:𝐴⟶𝐵) | |
| 5 | forn 6739 | . . . . . 6 ⊢ (𝑚:𝐴–onto→𝐵 → ran 𝑚 = 𝐵) | |
| 6 | 1 | rnex 7843 | . . . . . 6 ⊢ ran 𝑚 ∈ V |
| 7 | 5, 6 | eqeltrrdi 2837 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐵 ∈ V) |
| 8 | dmfex 7838 | . . . . . 6 ⊢ ((𝑚 ∈ V ∧ 𝑚:𝐴⟶𝐵) → 𝐴 ∈ V) | |
| 9 | 1, 4, 8 | sylancr 587 | . . . . 5 ⊢ (𝑚:𝐴–onto→𝐵 → 𝐴 ∈ V) |
| 10 | 7, 9 | elmapd 8767 | . . . 4 ⊢ (𝑚:𝐴–onto→𝐵 → (𝑚 ∈ (𝐵 ↑m 𝐴) ↔ 𝑚:𝐴⟶𝐵)) |
| 11 | 4, 10 | mpbird 257 | . . 3 ⊢ (𝑚:𝐴–onto→𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
| 12 | 3, 11 | sylbi 217 | . 2 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} → 𝑚 ∈ (𝐵 ↑m 𝐴)) |
| 13 | 12 | ssriv 3939 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2707 Vcvv 3436 ⊆ wss 3903 ran crn 5620 ⟶wf 6478 –onto→wfo 6480 (class class class)co 7349 ↑m cmap 8753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 |
| This theorem is referenced by: fosetex 8785 |
| Copyright terms: Public domain | W3C validator |