Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ne1 | Structured version Visualization version GIF version |
Description: Zero is different from one (the commuted form is Axiom ax-1ne0 10871). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ne1 | ⊢ 0 ≠ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10871 | . 2 ⊢ 1 ≠ 0 | |
2 | 1 | necomi 2997 | 1 ⊢ 0 ≠ 1 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2942 0cc0 10802 1c1 10803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 ax-1ne0 10871 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: f13idfv 13648 hashrabsn1 14017 prhash2ex 14042 s2f1o 14557 f1oun2prg 14558 wrdlen2i 14583 mod2eq1n2dvds 15984 bezoutr1 16202 xrsnsgrp 20546 i1f1lem 24758 mcubic 25902 cubic2 25903 asinlem 25923 sqff1o 26236 dchrpt 26320 lgsqr 26404 lgsqrmodndvds 26406 2lgslem4 26459 umgr2v2e 27795 umgr2v2evd2 27797 usgr2trlncl 28029 usgr2pthlem 28032 uspgrn2crct 28074 ntrl2v2e 28423 konigsbergiedgw 28513 konigsberglem2 28518 konigsberglem5 28521 s2f1 31121 cycpm2tr 31288 cyc3evpm 31319 indf1o 31892 eulerpartlemgf 32246 sgnpbi 32413 prodfzo03 32483 hgt750lemg 32534 hgt750lemb 32536 tgoldbachgt 32543 lcmineqlem11 39975 sn-1ne2 40216 nn0rppwr 40254 sn-inelr 40356 mncn0 40880 aaitgo 40903 fourierdlem60 43597 fourierdlem61 43598 fun2dmnopgexmpl 44663 zlmodzxzel 45579 zlmodzxzscm 45581 zlmodzxzadd 45582 zlmodzxznm 45726 zlmodzxzldeplem 45727 fv2arycl 45882 2arymptfv 45884 2arymaptf1 45887 2arymaptfo 45888 line2 45986 line2x 45988 |
Copyright terms: Public domain | W3C validator |