![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ne1 | Structured version Visualization version GIF version |
Description: Zero is different from one (the commuted form is Axiom ax-1ne0 11253). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ne1 | ⊢ 0 ≠ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 11253 | . 2 ⊢ 1 ≠ 0 | |
2 | 1 | necomi 3001 | 1 ⊢ 0 ≠ 1 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 0cc0 11184 1c1 11185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 ax-1ne0 11253 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: f13idfv 14051 hashrabsn1 14423 prhash2ex 14448 s2f1o 14965 f1oun2prg 14966 wrdlen2i 14991 mod2eq1n2dvds 16395 nn0rppwr 16608 bezoutr1 16616 xrsnsgrp 21443 i1f1lem 25743 mcubic 26908 cubic2 26909 asinlem 26929 sqff1o 27243 dchrpt 27329 lgsqr 27413 lgsqrmodndvds 27415 2lgslem4 27468 umgr2v2e 29561 umgr2v2evd2 29563 usgr2trlncl 29796 usgr2pthlem 29799 uspgrn2crct 29841 ntrl2v2e 30190 konigsbergiedgw 30280 konigsberglem2 30285 konigsberglem5 30288 s2f1 32911 cycpm2tr 33112 cyc3evpm 33143 evl1deg1 33566 evl1deg2 33567 evl1deg3 33568 rtelextdg2lem 33717 indf1o 33988 eulerpartlemgf 34344 sgnpbi 34511 prodfzo03 34580 hgt750lemg 34631 hgt750lemb 34633 tgoldbachgt 34640 lcmineqlem11 41996 sn-1ne2 42254 expeq1d 42311 sn-nnne0 42424 sn-inelr 42443 mncn0 43096 aaitgo 43119 fourierdlem60 46087 fourierdlem61 46088 fun2dmnopgexmpl 47199 usgrexmpl1lem 47836 usgrexmpl2lem 47841 usgrexmpl2nb0 47846 zlmodzxzel 48080 zlmodzxzscm 48082 zlmodzxzadd 48083 zlmodzxznm 48226 zlmodzxzldeplem 48227 fv2arycl 48382 2arymptfv 48384 2arymaptf1 48387 2arymaptfo 48388 line2 48486 line2x 48488 |
Copyright terms: Public domain | W3C validator |