![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ne1 | Structured version Visualization version GIF version |
Description: Zero is different from one (the commuted form is the axiom ax-1ne0 10341). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ne1 | ⊢ 0 ≠ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10341 | . 2 ⊢ 1 ≠ 0 | |
2 | 1 | necomi 3022 | 1 ⊢ 0 ≠ 1 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2968 0cc0 10272 1c1 10273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-ext 2753 ax-1ne0 10341 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-cleq 2769 df-ne 2969 |
This theorem is referenced by: f13idfv 13118 hashrabsn1 13478 prhash2ex 13501 s2f1o 14067 f1oun2prg 14068 wrdlen2i 14093 mod2eq1n2dvds 15475 bezoutr1 15688 xrsnsgrp 20178 i1f1lem 23893 mcubic 25025 cubic2 25026 asinlem 25046 sqff1o 25360 dchrpt 25444 lgsqr 25528 lgsqrmodndvds 25530 2lgslem4 25583 umgr2v2e 26873 umgr2v2evd2 26875 usgr2trlncl 27112 usgr2pthlem 27115 uspgrn2crct 27157 ntrl2v2e 27561 konigsbergiedgw 27654 konigsberglem2 27659 konigsberglem5 27662 nn0sqeq1 30078 indf1o 30684 eulerpartlemgf 31039 sgnpbi 31207 prodfzo03 31283 hgt750lemg 31334 hgt750lemb 31336 tgoldbachgt 31343 nn0rppwr 38144 mncn0 38650 aaitgo 38673 fourierdlem60 41292 fourierdlem61 41293 fun2dmnopgexmpl 42307 zlmodzxzel 43130 zlmodzxzscm 43132 zlmodzxzadd 43133 zlmodzxznm 43283 zlmodzxzldeplem 43284 line2 43470 line2x 43472 |
Copyright terms: Public domain | W3C validator |