![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeu2 | Structured version Visualization version GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
funeu2 | ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ 𝐹) → ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4876 | . 2 ⊢ (𝐴𝐹𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹) | |
2 | funeu 6152 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | |
3 | df-br 4876 | . . . 4 ⊢ (𝐴𝐹𝑦 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹) | |
4 | 3 | eubii 2658 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
5 | 2, 4 | sylib 210 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
6 | 1, 5 | sylan2br 588 | 1 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ 𝐹) → ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 ∃!weu 2639 〈cop 4405 class class class wbr 4875 Fun wfun 6121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-fun 6129 |
This theorem is referenced by: funssres 6170 |
Copyright terms: Public domain | W3C validator |