MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeu2 Structured version   Visualization version   GIF version

Theorem funeu2 6574
Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
funeu2 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem funeu2
StepHypRef Expression
1 df-br 5149 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
2 funeu 6573 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
3 df-br 5149 . . . 4 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
43eubii 2579 . . 3 (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
52, 4sylib 217 . 2 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
61, 5sylan2br 595 1 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  ∃!weu 2562  cop 4634   class class class wbr 5148  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-fun 6545
This theorem is referenced by:  funssres  6592
  Copyright terms: Public domain W3C validator