![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeu2 | Structured version Visualization version GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
funeu2 | ⊢ ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5142 | . 2 ⊢ (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹) | |
2 | funeu 6566 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | |
3 | df-br 5142 | . . . 4 ⊢ (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹) | |
4 | 3 | eubii 2573 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
5 | 2, 4 | sylib 217 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
6 | 1, 5 | sylan2br 594 | 1 ⊢ ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∃!weu 2556 ⟨cop 4629 class class class wbr 5141 Fun wfun 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-fun 6538 |
This theorem is referenced by: funssres 6585 |
Copyright terms: Public domain | W3C validator |