MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeu2 Structured version   Visualization version   GIF version

Theorem funeu2 6572
Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
funeu2 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem funeu2
StepHypRef Expression
1 df-br 5124 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
2 funeu 6571 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
3 df-br 5124 . . . 4 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
43eubii 2583 . . 3 (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
52, 4sylib 218 . 2 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
61, 5sylan2br 595 1 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  ∃!weu 2566  cop 4612   class class class wbr 5123  Fun wfun 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-fun 6543
This theorem is referenced by:  funssres  6590
  Copyright terms: Public domain W3C validator