MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopabeq Structured version   Visualization version   GIF version

Theorem funopabeq 6554
Description: A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
Assertion
Ref Expression
funopabeq Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem funopabeq
StepHypRef Expression
1 funopab 6553 . 2 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} ↔ ∀𝑥∃*𝑦 𝑦 = 𝐴)
2 moeq 3680 . 2 ∃*𝑦 𝑦 = 𝐴
31, 2mpgbir 1799 1 Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ∃*wmo 2532  {copab 5171  Fun wfun 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-fun 6515
This theorem is referenced by:  funopab4  6555
  Copyright terms: Public domain W3C validator