Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funopab4 | Structured version Visualization version GIF version |
Description: A class of ordered pairs of values in the form used by df-mpt 5121 is a function. (Contributed by NM, 17-Feb-2013.) |
Ref | Expression |
---|---|
funopab4 | ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
2 | 1 | ssopab2i 5415 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
3 | funopabeq 6385 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | |
4 | funss 6368 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → (Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)})) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ⊆ wss 3853 {copab 5102 Fun wfun 6343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-br 5041 df-opab 5103 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-fun 6351 |
This theorem is referenced by: funmpt 6387 hartogslem1 9091 |
Copyright terms: Public domain | W3C validator |