![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funopab4 | Structured version Visualization version GIF version |
Description: A class of ordered pairs of values in the form used by df-mpt 5225 is a function. (Contributed by NM, 17-Feb-2013.) |
Ref | Expression |
---|---|
funopab4 | ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
2 | 1 | ssopab2i 5543 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} |
3 | funopabeq 6577 | . 2 ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} | |
4 | funss 6560 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} → (Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} → Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ 𝑦 = 𝐴)})) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ⊆ wss 3943 {copab 5203 Fun wfun 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-fun 6538 |
This theorem is referenced by: funmpt 6579 hartogslem1 9536 |
Copyright terms: Public domain | W3C validator |