| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funopab4 | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs of values in the form used by df-mpt 5184 is a function. (Contributed by NM, 17-Feb-2013.) |
| Ref | Expression |
|---|---|
| funopab4 | ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
| 2 | 1 | ssopab2i 5505 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
| 3 | funopabeq 6536 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | |
| 4 | funss 6519 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → (Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)})) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊆ wss 3911 {copab 5164 Fun wfun 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-fun 6501 |
| This theorem is referenced by: funmpt 6538 hartogslem1 9471 |
| Copyright terms: Public domain | W3C validator |