MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopab4 Structured version   Visualization version   GIF version

Theorem funopab4 6386
Description: A class of ordered pairs of values in the form used by df-mpt 5121 is a function. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
funopab4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem funopab4
StepHypRef Expression
1 simpr 488 . . 3 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
21ssopab2i 5415 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
3 funopabeq 6385 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
4 funss 6368 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} → (Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} → Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}))
52, 3, 4mp2 9 1 Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wss 3853  {copab 5102  Fun wfun 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-br 5041  df-opab 5103  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-fun 6351
This theorem is referenced by:  funmpt  6387  hartogslem1  9091
  Copyright terms: Public domain W3C validator