MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopab4 Structured version   Visualization version   GIF version

Theorem funopab4 6455
Description: A class of ordered pairs of values in the form used by df-mpt 5154 is a function. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
funopab4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem funopab4
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
21ssopab2i 5456 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
3 funopabeq 6454 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
4 funss 6437 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} → (Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} → Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}))
52, 3, 4mp2 9 1 Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wss 3883  {copab 5132  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-fun 6420
This theorem is referenced by:  funmpt  6456  hartogslem1  9231
  Copyright terms: Public domain W3C validator