Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funopab4 | Structured version Visualization version GIF version |
Description: A class of ordered pairs of values in the form used by df-mpt 5158 is a function. (Contributed by NM, 17-Feb-2013.) |
Ref | Expression |
---|---|
funopab4 | ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
2 | 1 | ssopab2i 5463 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
3 | funopabeq 6470 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | |
4 | funss 6453 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → (Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)})) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ⊆ wss 3887 {copab 5136 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: funmpt 6472 hartogslem1 9301 |
Copyright terms: Public domain | W3C validator |