MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopab4 Structured version   Visualization version   GIF version

Theorem funopab4 6518
Description: A class of ordered pairs of values in the form used by df-mpt 5171 is a function. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
funopab4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem funopab4
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
21ssopab2i 5488 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
3 funopabeq 6517 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
4 funss 6500 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} → (Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} → Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}))
52, 3, 4mp2 9 1 Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wss 3897  {copab 5151  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-fun 6483
This theorem is referenced by:  funmpt  6519  hartogslem1  9428
  Copyright terms: Public domain W3C validator