Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnmo Structured version   Visualization version   GIF version

Theorem funressnmo 47047
Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressnmo ((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑉

Proof of Theorem funressnmo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4599 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21reseq2d 5950 . . . . 5 (𝑥 = 𝐴 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐴}))
32funeqd 6538 . . . 4 (𝑥 = 𝐴 → (Fun (𝐹 ↾ {𝑥}) ↔ Fun (𝐹 ↾ {𝐴})))
4 breq1 5110 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
54mobidv 2542 . . . 4 (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦))
63, 5imbi12d 344 . . 3 (𝑥 = 𝐴 → ((Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦)))
7 funressnvmo 47046 . . 3 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
86, 7vtoclg 3520 . 2 (𝐴𝑉 → (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦))
98imp 406 1 ((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2531  {csn 4589   class class class wbr 5107  cres 5640  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-res 5650  df-fun 6513
This theorem is referenced by:  funressneu  47048
  Copyright terms: Public domain W3C validator