Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnmo Structured version   Visualization version   GIF version

Theorem funressnmo 44427
Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressnmo ((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑉

Proof of Theorem funressnmo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4568 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21reseq2d 5880 . . . . 5 (𝑥 = 𝐴 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐴}))
32funeqd 6440 . . . 4 (𝑥 = 𝐴 → (Fun (𝐹 ↾ {𝑥}) ↔ Fun (𝐹 ↾ {𝐴})))
4 breq1 5073 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
54mobidv 2549 . . . 4 (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦))
63, 5imbi12d 344 . . 3 (𝑥 = 𝐴 → ((Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦)))
7 funressnvmo 44426 . . 3 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
86, 7vtoclg 3495 . 2 (𝐴𝑉 → (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦))
98imp 406 1 ((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ∃*wmo 2538  {csn 4558   class class class wbr 5070  cres 5582  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-res 5592  df-fun 6420
This theorem is referenced by:  funressneu  44428
  Copyright terms: Public domain W3C validator