![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funressnmo | Structured version Visualization version GIF version |
Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
funressnmo | ⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4637 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | reseq2d 5979 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐴})) |
3 | 2 | funeqd 6567 | . . . 4 ⊢ (𝑥 = 𝐴 → (Fun (𝐹 ↾ {𝑥}) ↔ Fun (𝐹 ↾ {𝐴}))) |
4 | breq1 5150 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
5 | 4 | mobidv 2543 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦)) |
6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦))) |
7 | funressnvmo 45741 | . . 3 ⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) | |
8 | 6, 7 | vtoclg 3556 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦)) |
9 | 8 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃*wmo 2532 {csn 4627 class class class wbr 5147 ↾ cres 5677 Fun wfun 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-res 5687 df-fun 6542 |
This theorem is referenced by: funressneu 45743 |
Copyright terms: Public domain | W3C validator |