![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funressnmo | Structured version Visualization version GIF version |
Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
funressnmo | ⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4633 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | reseq2d 5975 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐴})) |
3 | 2 | funeqd 6564 | . . . 4 ⊢ (𝑥 = 𝐴 → (Fun (𝐹 ↾ {𝑥}) ↔ Fun (𝐹 ↾ {𝐴}))) |
4 | breq1 5144 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
5 | 4 | mobidv 2537 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦)) |
6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦))) |
7 | funressnvmo 46332 | . . 3 ⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) | |
8 | 6, 7 | vtoclg 3537 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦)) |
9 | 8 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃*wmo 2526 {csn 4623 class class class wbr 5141 ↾ cres 5671 Fun wfun 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2528 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-res 5681 df-fun 6539 |
This theorem is referenced by: funressneu 46334 |
Copyright terms: Public domain | W3C validator |