Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnmo Structured version   Visualization version   GIF version

Theorem funressnmo 47024
Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressnmo ((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑉

Proof of Theorem funressnmo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4644 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21reseq2d 6004 . . . . 5 (𝑥 = 𝐴 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐴}))
32funeqd 6596 . . . 4 (𝑥 = 𝐴 → (Fun (𝐹 ↾ {𝑥}) ↔ Fun (𝐹 ↾ {𝐴})))
4 breq1 5154 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
54mobidv 2549 . . . 4 (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦))
63, 5imbi12d 344 . . 3 (𝑥 = 𝐴 → ((Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦)))
7 funressnvmo 47023 . . 3 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
86, 7vtoclg 3557 . 2 (𝐴𝑉 → (Fun (𝐹 ↾ {𝐴}) → ∃*𝑦 𝐴𝐹𝑦))
98imp 406 1 ((𝐴𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ∃*wmo 2538  {csn 4634   class class class wbr 5151  cres 5695  Fun wfun 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-res 5705  df-fun 6571
This theorem is referenced by:  funressneu  47025
  Copyright terms: Public domain W3C validator