MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveq12i Structured version   Visualization version   GIF version

Theorem fveq12i 6846
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
fveq12i.1 𝐹 = 𝐺
fveq12i.2 𝐴 = 𝐵
Assertion
Ref Expression
fveq12i (𝐹𝐴) = (𝐺𝐵)

Proof of Theorem fveq12i
StepHypRef Expression
1 fveq12i.1 . . 3 𝐹 = 𝐺
21fveq1i 6841 . 2 (𝐹𝐴) = (𝐺𝐴)
3 fveq12i.2 . . 3 𝐴 = 𝐵
43fveq2i 6843 . 2 (𝐺𝐴) = (𝐺𝐵)
52, 4eqtri 2752 1 (𝐹𝐴) = (𝐺𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507
This theorem is referenced by:  cats1fvn  14800  sadcadd  16404  sadadd2  16406  coe1fzgsumdlem  22166  evl1gsumdlem  22219  madufval  22500  clwlkcompbp  29685  2wlkond  29840  1pthond  30046  3cycld  30080  2cycld  35098  kur14lem5  35170  bj-ndxarg  37038  evl1gprodd  42078  aks5lem3a  42150  fourierdlem62  46139  fouriersw  46202  ackval41a  48656  ackval42  48658
  Copyright terms: Public domain W3C validator