MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveq12i Structured version   Visualization version   GIF version

Theorem fveq12i 6815
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
fveq12i.1 𝐹 = 𝐺
fveq12i.2 𝐴 = 𝐵
Assertion
Ref Expression
fveq12i (𝐹𝐴) = (𝐺𝐵)

Proof of Theorem fveq12i
StepHypRef Expression
1 fveq12i.1 . . 3 𝐹 = 𝐺
21fveq1i 6810 . 2 (𝐹𝐴) = (𝐺𝐴)
3 fveq12i.2 . . 3 𝐴 = 𝐵
43fveq2i 6812 . 2 (𝐺𝐴) = (𝐺𝐵)
52, 4eqtri 2765 1 (𝐹𝐴) = (𝐺𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-iota 6415  df-fv 6471
This theorem is referenced by:  cats1fvn  14640  sadcadd  16234  sadadd2  16236  coe1fzgsumdlem  21543  evl1gsumdlem  21593  madufval  21857  clwlkcompbp  28258  2wlkond  28410  1pthond  28616  3cycld  28650  2cycld  33206  kur14lem5  33278  bj-ndxarg  35308  fourierdlem62  43953  fouriersw  44016  ackval41a  46299  ackval42  46301
  Copyright terms: Public domain W3C validator