MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveq12i Structured version   Visualization version   GIF version

Theorem fveq12i 6928
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
fveq12i.1 𝐹 = 𝐺
fveq12i.2 𝐴 = 𝐵
Assertion
Ref Expression
fveq12i (𝐹𝐴) = (𝐺𝐵)

Proof of Theorem fveq12i
StepHypRef Expression
1 fveq12i.1 . . 3 𝐹 = 𝐺
21fveq1i 6923 . 2 (𝐹𝐴) = (𝐺𝐴)
3 fveq12i.2 . . 3 𝐴 = 𝐵
43fveq2i 6925 . 2 (𝐺𝐴) = (𝐺𝐵)
52, 4eqtri 2768 1 (𝐹𝐴) = (𝐺𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cfv 6575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583
This theorem is referenced by:  cats1fvn  14909  sadcadd  16506  sadadd2  16508  coe1fzgsumdlem  22330  evl1gsumdlem  22383  madufval  22666  clwlkcompbp  29820  2wlkond  29972  1pthond  30178  3cycld  30212  2cycld  35108  kur14lem5  35180  bj-ndxarg  37045  evl1gprodd  42076  aks5lem3a  42148  fourierdlem62  46091  fouriersw  46154  ackval41a  48430  ackval42  48432
  Copyright terms: Public domain W3C validator