![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fveq12i | Structured version Visualization version GIF version |
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
fveq12i.1 | ⊢ 𝐹 = 𝐺 |
fveq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fveq12i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq12i.1 | . . 3 ⊢ 𝐹 = 𝐺 | |
2 | 1 | fveq1i 6923 | . 2 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
3 | fveq12i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 3 | fveq2i 6925 | . 2 ⊢ (𝐺‘𝐴) = (𝐺‘𝐵) |
5 | 2, 4 | eqtri 2768 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ‘cfv 6575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6527 df-fv 6583 |
This theorem is referenced by: cats1fvn 14909 sadcadd 16506 sadadd2 16508 coe1fzgsumdlem 22330 evl1gsumdlem 22383 madufval 22666 clwlkcompbp 29820 2wlkond 29972 1pthond 30178 3cycld 30212 2cycld 35108 kur14lem5 35180 bj-ndxarg 37045 evl1gprodd 42076 aks5lem3a 42148 fourierdlem62 46091 fouriersw 46154 ackval41a 48430 ackval42 48432 |
Copyright terms: Public domain | W3C validator |