MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveq12i Structured version   Visualization version   GIF version

Theorem fveq12i 6864
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
fveq12i.1 𝐹 = 𝐺
fveq12i.2 𝐴 = 𝐵
Assertion
Ref Expression
fveq12i (𝐹𝐴) = (𝐺𝐵)

Proof of Theorem fveq12i
StepHypRef Expression
1 fveq12i.1 . . 3 𝐹 = 𝐺
21fveq1i 6859 . 2 (𝐹𝐴) = (𝐺𝐴)
3 fveq12i.2 . . 3 𝐴 = 𝐵
43fveq2i 6861 . 2 (𝐺𝐴) = (𝐺𝐵)
52, 4eqtri 2752 1 (𝐹𝐴) = (𝐺𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519
This theorem is referenced by:  cats1fvn  14824  sadcadd  16428  sadadd2  16430  coe1fzgsumdlem  22190  evl1gsumdlem  22243  madufval  22524  clwlkcompbp  29712  2wlkond  29867  1pthond  30073  3cycld  30107  2cycld  35125  kur14lem5  35197  bj-ndxarg  37065  evl1gprodd  42105  aks5lem3a  42177  fourierdlem62  46166  fouriersw  46229  ackval41a  48683  ackval42  48685
  Copyright terms: Public domain W3C validator