Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveq12i | Structured version Visualization version GIF version |
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
fveq12i.1 | ⊢ 𝐹 = 𝐺 |
fveq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fveq12i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq12i.1 | . . 3 ⊢ 𝐹 = 𝐺 | |
2 | 1 | fveq1i 6810 | . 2 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
3 | fveq12i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 3 | fveq2i 6812 | . 2 ⊢ (𝐺‘𝐴) = (𝐺‘𝐵) |
5 | 2, 4 | eqtri 2765 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ‘cfv 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-iota 6415 df-fv 6471 |
This theorem is referenced by: cats1fvn 14640 sadcadd 16234 sadadd2 16236 coe1fzgsumdlem 21543 evl1gsumdlem 21593 madufval 21857 clwlkcompbp 28258 2wlkond 28410 1pthond 28616 3cycld 28650 2cycld 33206 kur14lem5 33278 bj-ndxarg 35308 fourierdlem62 43953 fouriersw 44016 ackval41a 46299 ackval42 46301 |
Copyright terms: Public domain | W3C validator |