![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fveq12i | Structured version Visualization version GIF version |
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
fveq12i.1 | ⊢ 𝐹 = 𝐺 |
fveq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fveq12i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq12i.1 | . . 3 ⊢ 𝐹 = 𝐺 | |
2 | 1 | fveq1i 6912 | . 2 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
3 | fveq12i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 3 | fveq2i 6914 | . 2 ⊢ (𝐺‘𝐴) = (𝐺‘𝐵) |
5 | 2, 4 | eqtri 2764 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ‘cfv 6566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-iota 6519 df-fv 6574 |
This theorem is referenced by: cats1fvn 14900 sadcadd 16498 sadadd2 16500 coe1fzgsumdlem 22329 evl1gsumdlem 22382 madufval 22665 clwlkcompbp 29825 2wlkond 29980 1pthond 30186 3cycld 30220 2cycld 35135 kur14lem5 35207 bj-ndxarg 37072 evl1gprodd 42111 aks5lem3a 42183 fourierdlem62 46135 fouriersw 46198 ackval41a 48565 ackval42 48567 |
Copyright terms: Public domain | W3C validator |