| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveq12i | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.) |
| Ref | Expression |
|---|---|
| fveq12i.1 | ⊢ 𝐹 = 𝐺 |
| fveq12i.2 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| fveq12i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq12i.1 | . . 3 ⊢ 𝐹 = 𝐺 | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| 3 | fveq12i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 3 | fveq2i 6825 | . 2 ⊢ (𝐺‘𝐴) = (𝐺‘𝐵) |
| 5 | 2, 4 | eqtri 2754 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: cats1fvn 14765 sadcadd 16369 sadadd2 16371 coe1fzgsumdlem 22218 evl1gsumdlem 22271 madufval 22552 clwlkcompbp 29760 2wlkond 29915 1pthond 30124 3cycld 30158 2cycld 35182 kur14lem5 35254 bj-ndxarg 37121 evl1gprodd 42220 aks5lem3a 42292 fourierdlem62 46276 fouriersw 46339 ackval41a 48805 ackval42 48807 |
| Copyright terms: Public domain | W3C validator |