| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveq12i | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.) |
| Ref | Expression |
|---|---|
| fveq12i.1 | ⊢ 𝐹 = 𝐺 |
| fveq12i.2 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| fveq12i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq12i.1 | . . 3 ⊢ 𝐹 = 𝐺 | |
| 2 | 1 | fveq1i 6866 | . 2 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| 3 | fveq12i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 3 | fveq2i 6868 | . 2 ⊢ (𝐺‘𝐴) = (𝐺‘𝐵) |
| 5 | 2, 4 | eqtri 2753 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 |
| This theorem is referenced by: cats1fvn 14834 sadcadd 16434 sadadd2 16436 coe1fzgsumdlem 22196 evl1gsumdlem 22249 madufval 22530 clwlkcompbp 29719 2wlkond 29874 1pthond 30080 3cycld 30114 2cycld 35127 kur14lem5 35199 bj-ndxarg 37062 evl1gprodd 42097 aks5lem3a 42169 fourierdlem62 46139 fouriersw 46202 ackval41a 48616 ackval42 48618 |
| Copyright terms: Public domain | W3C validator |