Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3cycld | Structured version Visualization version GIF version |
Description: Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
3trld.n | ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) |
3cycld.e | ⊢ (𝜑 → 𝐴 = 𝐷) |
Ref | Expression |
---|---|
3cycld | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
2 | 3wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
3 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
4 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
5 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
6 | 3wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 3wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 3trld.n | . . 3 ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 3pthd 28827 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
10 | 3cycld.e | . . 3 ⊢ (𝜑 → 𝐴 = 𝐷) | |
11 | 1 | fveq1i 6827 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶𝐷”〉‘0) |
12 | s4fv0 14708 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶𝐷”〉‘0) = 𝐴) | |
13 | 11, 12 | eqtrid 2788 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
14 | 13 | ad3antrrr 727 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ 𝐴 = 𝐷) → (𝑃‘0) = 𝐴) |
15 | simpr 485 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷) | |
16 | 2 | fveq2i 6829 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾𝐿”〉) |
17 | s3len 14707 | . . . . . . . . 9 ⊢ (♯‘〈“𝐽𝐾𝐿”〉) = 3 | |
18 | 16, 17 | eqtri 2764 | . . . . . . . 8 ⊢ (♯‘𝐹) = 3 |
19 | 1, 18 | fveq12i 6832 | . . . . . . 7 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝐴𝐵𝐶𝐷”〉‘3) |
20 | s4fv3 14711 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → (〈“𝐴𝐵𝐶𝐷”〉‘3) = 𝐷) | |
21 | 19, 20 | eqtr2id 2789 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (𝑃‘(♯‘𝐹))) |
22 | 21 | adantl 482 | . . . . 5 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐷 = (𝑃‘(♯‘𝐹))) |
23 | 22 | ad2antlr 724 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ 𝐴 = 𝐷) → 𝐷 = (𝑃‘(♯‘𝐹))) |
24 | 14, 15, 23 | 3eqtrd 2780 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ 𝐴 = 𝐷) → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
25 | 3, 10, 24 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
26 | iscycl 28448 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
27 | 9, 25, 26 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ⊆ wss 3898 {cpr 4576 class class class wbr 5093 ‘cfv 6480 0cc0 10973 3c3 12131 ♯chash 14146 〈“cs3 14655 〈“cs4 14656 Vtxcvtx 27656 iEdgciedg 27657 Pathscpths 28369 Cyclesccycls 28442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-fzo 13485 df-hash 14147 df-word 14319 df-concat 14375 df-s1 14401 df-s2 14661 df-s3 14662 df-s4 14663 df-wlks 28256 df-trls 28349 df-pths 28373 df-cycls 28444 |
This theorem is referenced by: 3cyclpd 28832 |
Copyright terms: Public domain | W3C validator |