![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3cycld | Structured version Visualization version GIF version |
Description: Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
3trld.n | ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) |
3cycld.e | ⊢ (𝜑 → 𝐴 = 𝐷) |
Ref | Expression |
---|---|
3cycld | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
2 | 3wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
3 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
4 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
5 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
6 | 3wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 3wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 3trld.n | . . 3 ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 3pthd 30110 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
10 | 3cycld.e | . . 3 ⊢ (𝜑 → 𝐴 = 𝐷) | |
11 | 1 | fveq1i 6904 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶𝐷”〉‘0) |
12 | s4fv0 14906 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶𝐷”〉‘0) = 𝐴) | |
13 | 11, 12 | eqtrid 2778 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
14 | 13 | ad3antrrr 728 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ 𝐴 = 𝐷) → (𝑃‘0) = 𝐴) |
15 | simpr 483 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷) | |
16 | 2 | fveq2i 6906 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾𝐿”〉) |
17 | s3len 14905 | . . . . . . . . 9 ⊢ (♯‘〈“𝐽𝐾𝐿”〉) = 3 | |
18 | 16, 17 | eqtri 2754 | . . . . . . . 8 ⊢ (♯‘𝐹) = 3 |
19 | 1, 18 | fveq12i 6909 | . . . . . . 7 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝐴𝐵𝐶𝐷”〉‘3) |
20 | s4fv3 14909 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → (〈“𝐴𝐵𝐶𝐷”〉‘3) = 𝐷) | |
21 | 19, 20 | eqtr2id 2779 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (𝑃‘(♯‘𝐹))) |
22 | 21 | adantl 480 | . . . . 5 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐷 = (𝑃‘(♯‘𝐹))) |
23 | 22 | ad2antlr 725 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ 𝐴 = 𝐷) → 𝐷 = (𝑃‘(♯‘𝐹))) |
24 | 14, 15, 23 | 3eqtrd 2770 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ 𝐴 = 𝐷) → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
25 | 3, 10, 24 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
26 | iscycl 29731 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
27 | 9, 25, 26 | sylanbrc 581 | 1 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ⊆ wss 3947 {cpr 4635 class class class wbr 5155 ‘cfv 6556 0cc0 11160 3c3 12322 ♯chash 14349 〈“cs3 14853 〈“cs4 14854 Vtxcvtx 28935 iEdgciedg 28936 Pathscpths 29652 Cyclesccycls 29725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-er 8736 df-map 8859 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-card 9984 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12613 df-uz 12877 df-fz 13541 df-fzo 13684 df-hash 14350 df-word 14525 df-concat 14581 df-s1 14606 df-s2 14859 df-s3 14860 df-s4 14861 df-wlks 29539 df-trls 29632 df-pths 29656 df-cycls 29727 |
This theorem is referenced by: 3cyclpd 30115 |
Copyright terms: Public domain | W3C validator |