MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cycld Structured version   Visualization version   GIF version

Theorem 3cycld 30114
Description: Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
3wlkd.v 𝑉 = (Vtx‘𝐺)
3wlkd.i 𝐼 = (iEdg‘𝐺)
3trld.n (𝜑 → (𝐽𝐾𝐽𝐿𝐾𝐿))
3cycld.e (𝜑𝐴 = 𝐷)
Assertion
Ref Expression
3cycld (𝜑𝐹(Cycles‘𝐺)𝑃)

Proof of Theorem 3cycld
StepHypRef Expression
1 3wlkd.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . 3 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
4 3wlkd.n . . 3 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
5 3wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
6 3wlkd.v . . 3 𝑉 = (Vtx‘𝐺)
7 3wlkd.i . . 3 𝐼 = (iEdg‘𝐺)
8 3trld.n . . 3 (𝜑 → (𝐽𝐾𝐽𝐿𝐾𝐿))
91, 2, 3, 4, 5, 6, 7, 83pthd 30110 . 2 (𝜑𝐹(Paths‘𝐺)𝑃)
10 3cycld.e . . 3 (𝜑𝐴 = 𝐷)
111fveq1i 6904 . . . . . 6 (𝑃‘0) = (⟨“𝐴𝐵𝐶𝐷”⟩‘0)
12 s4fv0 14906 . . . . . 6 (𝐴𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴)
1311, 12eqtrid 2778 . . . . 5 (𝐴𝑉 → (𝑃‘0) = 𝐴)
1413ad3antrrr 728 . . . 4 ((((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) ∧ 𝐴 = 𝐷) → (𝑃‘0) = 𝐴)
15 simpr 483 . . . 4 ((((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷)
162fveq2i 6906 . . . . . . . . 9 (♯‘𝐹) = (♯‘⟨“𝐽𝐾𝐿”⟩)
17 s3len 14905 . . . . . . . . 9 (♯‘⟨“𝐽𝐾𝐿”⟩) = 3
1816, 17eqtri 2754 . . . . . . . 8 (♯‘𝐹) = 3
191, 18fveq12i 6909 . . . . . . 7 (𝑃‘(♯‘𝐹)) = (⟨“𝐴𝐵𝐶𝐷”⟩‘3)
20 s4fv3 14909 . . . . . . 7 (𝐷𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
2119, 20eqtr2id 2779 . . . . . 6 (𝐷𝑉𝐷 = (𝑃‘(♯‘𝐹)))
2221adantl 480 . . . . 5 ((𝐶𝑉𝐷𝑉) → 𝐷 = (𝑃‘(♯‘𝐹)))
2322ad2antlr 725 . . . 4 ((((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) ∧ 𝐴 = 𝐷) → 𝐷 = (𝑃‘(♯‘𝐹)))
2414, 15, 233eqtrd 2770 . . 3 ((((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) ∧ 𝐴 = 𝐷) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
253, 10, 24syl2anc 582 . 2 (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
26 iscycl 29731 . 2 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
279, 25, 26sylanbrc 581 1 (𝜑𝐹(Cycles‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wss 3947  {cpr 4635   class class class wbr 5155  cfv 6556  0cc0 11160  3c3 12322  chash 14349  ⟨“cs3 14853  ⟨“cs4 14854  Vtxcvtx 28935  iEdgciedg 28936  Pathscpths 29652  Cyclesccycls 29725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12613  df-uz 12877  df-fz 13541  df-fzo 13684  df-hash 14350  df-word 14525  df-concat 14581  df-s1 14606  df-s2 14859  df-s3 14860  df-s4 14861  df-wlks 29539  df-trls 29632  df-pths 29656  df-cycls 29727
This theorem is referenced by:  3cyclpd  30115
  Copyright terms: Public domain W3C validator