| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2cycld | Structured version Visualization version GIF version | ||
| Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| Ref | Expression |
|---|---|
| 2cycld.1 | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2cycld.2 | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2cycld.3 | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2cycld.4 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 2cycld.5 | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 2cycld.6 | ⊢ 𝑉 = (Vtx‘𝐺) |
| 2cycld.7 | ⊢ 𝐼 = (iEdg‘𝐺) |
| 2cycld.8 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
| 2cycld.9 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| 2cycld | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cycld.1 | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | 2cycld.2 | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | 2cycld.3 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 4 | 2cycld.4 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 5 | 2cycld.5 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
| 6 | 2cycld.6 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 2cycld.7 | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | 2cycld.8 | . . 3 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 2pthd 29929 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 10 | 2cycld.9 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 11 | 1 | fveq1i 6832 | . . . . . . 7 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
| 12 | s3fv0 14808 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
| 13 | 11, 12 | eqtrid 2780 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
| 14 | 13 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑃‘0) = 𝐴) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → (𝑃‘0) = 𝐴) |
| 16 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
| 17 | 2 | fveq2i 6834 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
| 18 | s2len 14806 | . . . . . . . . 9 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
| 19 | 17, 18 | eqtri 2756 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
| 20 | 1, 19 | fveq12i 6837 | . . . . . . 7 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝐴𝐵𝐶”〉‘2) |
| 21 | s3fv2 14810 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
| 22 | 20, 21 | eqtr2id 2781 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝑃‘(♯‘𝐹))) |
| 23 | 22 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 = (𝑃‘(♯‘𝐹))) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → 𝐶 = (𝑃‘(♯‘𝐹))) |
| 25 | 15, 16, 24 | 3eqtrd 2772 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 26 | 3, 10, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 27 | iscycl 29780 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 28 | 9, 26, 27 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ⊆ wss 3899 {cpr 4579 class class class wbr 5095 ‘cfv 6489 0cc0 11016 2c2 12190 ♯chash 14247 〈“cs2 14758 〈“cs3 14759 Vtxcvtx 28985 iEdgciedg 28986 Pathscpths 29699 Cyclesccycls 29774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-fzo 13565 df-hash 14248 df-word 14431 df-concat 14488 df-s1 14514 df-s2 14765 df-s3 14766 df-wlks 29589 df-trls 29680 df-pths 29703 df-cycls 29776 |
| This theorem is referenced by: 2cycl2d 35194 |
| Copyright terms: Public domain | W3C validator |