![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2cycld | Structured version Visualization version GIF version |
Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
Ref | Expression |
---|---|
2cycld.1 | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2cycld.2 | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2cycld.3 | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2cycld.4 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2cycld.5 | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2cycld.6 | ⊢ 𝑉 = (Vtx‘𝐺) |
2cycld.7 | ⊢ 𝐼 = (iEdg‘𝐺) |
2cycld.8 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
2cycld.9 | ⊢ (𝜑 → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
2cycld | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cycld.1 | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2cycld.2 | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2cycld.3 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2cycld.4 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2cycld.5 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 2cycld.6 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 2cycld.7 | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 2cycld.8 | . . 3 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 2pthd 29750 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
10 | 2cycld.9 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
11 | 1 | fveq1i 6898 | . . . . . . 7 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
12 | s3fv0 14874 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
13 | 11, 12 | eqtrid 2780 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
14 | 13 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑃‘0) = 𝐴) |
15 | 14 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → (𝑃‘0) = 𝐴) |
16 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
17 | 2 | fveq2i 6900 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
18 | s2len 14872 | . . . . . . . . 9 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
19 | 17, 18 | eqtri 2756 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
20 | 1, 19 | fveq12i 6903 | . . . . . . 7 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝐴𝐵𝐶”〉‘2) |
21 | s3fv2 14876 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
22 | 20, 21 | eqtr2id 2781 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝑃‘(♯‘𝐹))) |
23 | 22 | 3ad2ant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 = (𝑃‘(♯‘𝐹))) |
24 | 23 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → 𝐶 = (𝑃‘(♯‘𝐹))) |
25 | 15, 16, 24 | 3eqtrd 2772 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
26 | 3, 10, 25 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
27 | iscycl 29604 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
28 | 9, 26, 27 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ⊆ wss 3947 {cpr 4631 class class class wbr 5148 ‘cfv 6548 0cc0 11138 2c2 12297 ♯chash 14321 〈“cs2 14824 〈“cs3 14825 Vtxcvtx 28808 iEdgciedg 28809 Pathscpths 29525 Cyclesccycls 29598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-concat 14553 df-s1 14578 df-s2 14831 df-s3 14832 df-wlks 29412 df-trls 29505 df-pths 29529 df-cycls 29600 |
This theorem is referenced by: 2cycl2d 34749 |
Copyright terms: Public domain | W3C validator |