| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2cycld | Structured version Visualization version GIF version | ||
| Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| Ref | Expression |
|---|---|
| 2cycld.1 | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2cycld.2 | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2cycld.3 | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2cycld.4 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 2cycld.5 | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 2cycld.6 | ⊢ 𝑉 = (Vtx‘𝐺) |
| 2cycld.7 | ⊢ 𝐼 = (iEdg‘𝐺) |
| 2cycld.8 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
| 2cycld.9 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| 2cycld | ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cycld.1 | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | 2cycld.2 | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | 2cycld.3 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 4 | 2cycld.4 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 5 | 2cycld.5 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
| 6 | 2cycld.6 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 2cycld.7 | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | 2cycld.8 | . . 3 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 2pthd 29920 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 10 | 2cycld.9 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 11 | 1 | fveq1i 6841 | . . . . . . 7 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
| 12 | s3fv0 14833 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
| 13 | 11, 12 | eqtrid 2776 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
| 14 | 13 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑃‘0) = 𝐴) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → (𝑃‘0) = 𝐴) |
| 16 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
| 17 | 2 | fveq2i 6843 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
| 18 | s2len 14831 | . . . . . . . . 9 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
| 19 | 17, 18 | eqtri 2752 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
| 20 | 1, 19 | fveq12i 6846 | . . . . . . 7 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝐴𝐵𝐶”〉‘2) |
| 21 | s3fv2 14835 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
| 22 | 20, 21 | eqtr2id 2777 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝑃‘(♯‘𝐹))) |
| 23 | 22 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 = (𝑃‘(♯‘𝐹))) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → 𝐶 = (𝑃‘(♯‘𝐹))) |
| 25 | 15, 16, 24 | 3eqtrd 2768 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 = 𝐶) → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 26 | 3, 10, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 27 | iscycl 29771 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 28 | 9, 26, 27 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 {cpr 4587 class class class wbr 5102 ‘cfv 6499 0cc0 11044 2c2 12217 ♯chash 14271 〈“cs2 14783 〈“cs3 14784 Vtxcvtx 28976 iEdgciedg 28977 Pathscpths 29690 Cyclesccycls 29765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-s3 14791 df-wlks 29580 df-trls 29671 df-pths 29694 df-cycls 29767 |
| This theorem is referenced by: 2cycl2d 35119 |
| Copyright terms: Public domain | W3C validator |