Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41a | Structured version Visualization version GIF version |
Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
Ref | Expression |
---|---|
ackval41a | ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12139 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | fveq2i 6828 | . . 3 ⊢ (Ack‘4) = (Ack‘(3 + 1)) |
3 | 1e0p1 12580 | . . 3 ⊢ 1 = (0 + 1) | |
4 | 2, 3 | fveq12i 6831 | . 2 ⊢ ((Ack‘4)‘1) = ((Ack‘(3 + 1))‘(0 + 1)) |
5 | 3nn0 12352 | . . . 4 ⊢ 3 ∈ ℕ0 | |
6 | 0nn0 12349 | . . . 4 ⊢ 0 ∈ ℕ0 | |
7 | ackvalsucsucval 46393 | . . . 4 ⊢ ((3 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0))) | |
8 | 5, 6, 7 | mp2an 689 | . . 3 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0)) |
9 | 3p1e4 12219 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
10 | 9 | fveq2i 6828 | . . . . . . 7 ⊢ (Ack‘(3 + 1)) = (Ack‘4) |
11 | 10 | fveq1i 6826 | . . . . . 6 ⊢ ((Ack‘(3 + 1))‘0) = ((Ack‘4)‘0) |
12 | ackval40 46398 | . . . . . 6 ⊢ ((Ack‘4)‘0) = ;13 | |
13 | 11, 12 | eqtri 2764 | . . . . 5 ⊢ ((Ack‘(3 + 1))‘0) = ;13 |
14 | 13 | fveq2i 6828 | . . . 4 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((Ack‘3)‘;13) |
15 | 1nn0 12350 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
16 | 15, 5 | deccl 12553 | . . . . 5 ⊢ ;13 ∈ ℕ0 |
17 | oveq1 7344 | . . . . . . . . 9 ⊢ (𝑛 = ;13 → (𝑛 + 3) = (;13 + 3)) | |
18 | 17 | oveq2d 7353 | . . . . . . . 8 ⊢ (𝑛 = ;13 → (2↑(𝑛 + 3)) = (2↑(;13 + 3))) |
19 | 18 | oveq1d 7352 | . . . . . . 7 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑(;13 + 3)) − 3)) |
20 | eqid 2736 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
21 | 3p3e6 12226 | . . . . . . . . . 10 ⊢ (3 + 3) = 6 | |
22 | 15, 5, 5, 20, 21 | decaddi 12598 | . . . . . . . . 9 ⊢ (;13 + 3) = ;16 |
23 | 22 | oveq2i 7348 | . . . . . . . 8 ⊢ (2↑(;13 + 3)) = (2↑;16) |
24 | 23 | oveq1i 7347 | . . . . . . 7 ⊢ ((2↑(;13 + 3)) − 3) = ((2↑;16) − 3) |
25 | 19, 24 | eqtrdi 2792 | . . . . . 6 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑;16) − 3)) |
26 | ackval3 46388 | . . . . . 6 ⊢ (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) | |
27 | ovex 7370 | . . . . . 6 ⊢ ((2↑;16) − 3) ∈ V | |
28 | 25, 26, 27 | fvmpt 6931 | . . . . 5 ⊢ (;13 ∈ ℕ0 → ((Ack‘3)‘;13) = ((2↑;16) − 3)) |
29 | 16, 28 | ax-mp 5 | . . . 4 ⊢ ((Ack‘3)‘;13) = ((2↑;16) − 3) |
30 | 14, 29 | eqtri 2764 | . . 3 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((2↑;16) − 3) |
31 | 8, 30 | eqtri 2764 | . 2 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((2↑;16) − 3) |
32 | 4, 31 | eqtri 2764 | 1 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 0cc0 10972 1c1 10973 + caddc 10975 − cmin 11306 2c2 12129 3c3 12130 4c4 12131 6c6 12133 ℕ0cn0 12334 ;cdc 12538 ↑cexp 13883 Ackcack 46363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-seq 13823 df-exp 13884 df-itco 46364 df-ack 46365 |
This theorem is referenced by: ackval41 46400 ackval42 46401 |
Copyright terms: Public domain | W3C validator |