![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41a | Structured version Visualization version GIF version |
Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
Ref | Expression |
---|---|
ackval41a | ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12329 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | fveq2i 6910 | . . 3 ⊢ (Ack‘4) = (Ack‘(3 + 1)) |
3 | 1e0p1 12773 | . . 3 ⊢ 1 = (0 + 1) | |
4 | 2, 3 | fveq12i 6913 | . 2 ⊢ ((Ack‘4)‘1) = ((Ack‘(3 + 1))‘(0 + 1)) |
5 | 3nn0 12542 | . . . 4 ⊢ 3 ∈ ℕ0 | |
6 | 0nn0 12539 | . . . 4 ⊢ 0 ∈ ℕ0 | |
7 | ackvalsucsucval 48538 | . . . 4 ⊢ ((3 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0))) | |
8 | 5, 6, 7 | mp2an 692 | . . 3 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0)) |
9 | 3p1e4 12409 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
10 | 9 | fveq2i 6910 | . . . . . . 7 ⊢ (Ack‘(3 + 1)) = (Ack‘4) |
11 | 10 | fveq1i 6908 | . . . . . 6 ⊢ ((Ack‘(3 + 1))‘0) = ((Ack‘4)‘0) |
12 | ackval40 48543 | . . . . . 6 ⊢ ((Ack‘4)‘0) = ;13 | |
13 | 11, 12 | eqtri 2763 | . . . . 5 ⊢ ((Ack‘(3 + 1))‘0) = ;13 |
14 | 13 | fveq2i 6910 | . . . 4 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((Ack‘3)‘;13) |
15 | 1nn0 12540 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
16 | 15, 5 | deccl 12746 | . . . . 5 ⊢ ;13 ∈ ℕ0 |
17 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑛 = ;13 → (𝑛 + 3) = (;13 + 3)) | |
18 | 17 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑛 = ;13 → (2↑(𝑛 + 3)) = (2↑(;13 + 3))) |
19 | 18 | oveq1d 7446 | . . . . . . 7 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑(;13 + 3)) − 3)) |
20 | eqid 2735 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
21 | 3p3e6 12416 | . . . . . . . . . 10 ⊢ (3 + 3) = 6 | |
22 | 15, 5, 5, 20, 21 | decaddi 12791 | . . . . . . . . 9 ⊢ (;13 + 3) = ;16 |
23 | 22 | oveq2i 7442 | . . . . . . . 8 ⊢ (2↑(;13 + 3)) = (2↑;16) |
24 | 23 | oveq1i 7441 | . . . . . . 7 ⊢ ((2↑(;13 + 3)) − 3) = ((2↑;16) − 3) |
25 | 19, 24 | eqtrdi 2791 | . . . . . 6 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑;16) − 3)) |
26 | ackval3 48533 | . . . . . 6 ⊢ (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) | |
27 | ovex 7464 | . . . . . 6 ⊢ ((2↑;16) − 3) ∈ V | |
28 | 25, 26, 27 | fvmpt 7016 | . . . . 5 ⊢ (;13 ∈ ℕ0 → ((Ack‘3)‘;13) = ((2↑;16) − 3)) |
29 | 16, 28 | ax-mp 5 | . . . 4 ⊢ ((Ack‘3)‘;13) = ((2↑;16) − 3) |
30 | 14, 29 | eqtri 2763 | . . 3 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((2↑;16) − 3) |
31 | 8, 30 | eqtri 2763 | . 2 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((2↑;16) − 3) |
32 | 4, 31 | eqtri 2763 | 1 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 − cmin 11490 2c2 12319 3c3 12320 4c4 12321 6c6 12323 ℕ0cn0 12524 ;cdc 12731 ↑cexp 14099 Ackcack 48508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-seq 14040 df-exp 14100 df-itco 48509 df-ack 48510 |
This theorem is referenced by: ackval41 48545 ackval42 48546 |
Copyright terms: Public domain | W3C validator |