Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41a | Structured version Visualization version GIF version |
Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
Ref | Expression |
---|---|
ackval41a | ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12038 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | fveq2i 6777 | . . 3 ⊢ (Ack‘4) = (Ack‘(3 + 1)) |
3 | 1e0p1 12479 | . . 3 ⊢ 1 = (0 + 1) | |
4 | 2, 3 | fveq12i 6780 | . 2 ⊢ ((Ack‘4)‘1) = ((Ack‘(3 + 1))‘(0 + 1)) |
5 | 3nn0 12251 | . . . 4 ⊢ 3 ∈ ℕ0 | |
6 | 0nn0 12248 | . . . 4 ⊢ 0 ∈ ℕ0 | |
7 | ackvalsucsucval 46034 | . . . 4 ⊢ ((3 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0))) | |
8 | 5, 6, 7 | mp2an 689 | . . 3 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0)) |
9 | 3p1e4 12118 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
10 | 9 | fveq2i 6777 | . . . . . . 7 ⊢ (Ack‘(3 + 1)) = (Ack‘4) |
11 | 10 | fveq1i 6775 | . . . . . 6 ⊢ ((Ack‘(3 + 1))‘0) = ((Ack‘4)‘0) |
12 | ackval40 46039 | . . . . . 6 ⊢ ((Ack‘4)‘0) = ;13 | |
13 | 11, 12 | eqtri 2766 | . . . . 5 ⊢ ((Ack‘(3 + 1))‘0) = ;13 |
14 | 13 | fveq2i 6777 | . . . 4 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((Ack‘3)‘;13) |
15 | 1nn0 12249 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
16 | 15, 5 | deccl 12452 | . . . . 5 ⊢ ;13 ∈ ℕ0 |
17 | oveq1 7282 | . . . . . . . . 9 ⊢ (𝑛 = ;13 → (𝑛 + 3) = (;13 + 3)) | |
18 | 17 | oveq2d 7291 | . . . . . . . 8 ⊢ (𝑛 = ;13 → (2↑(𝑛 + 3)) = (2↑(;13 + 3))) |
19 | 18 | oveq1d 7290 | . . . . . . 7 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑(;13 + 3)) − 3)) |
20 | eqid 2738 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
21 | 3p3e6 12125 | . . . . . . . . . 10 ⊢ (3 + 3) = 6 | |
22 | 15, 5, 5, 20, 21 | decaddi 12497 | . . . . . . . . 9 ⊢ (;13 + 3) = ;16 |
23 | 22 | oveq2i 7286 | . . . . . . . 8 ⊢ (2↑(;13 + 3)) = (2↑;16) |
24 | 23 | oveq1i 7285 | . . . . . . 7 ⊢ ((2↑(;13 + 3)) − 3) = ((2↑;16) − 3) |
25 | 19, 24 | eqtrdi 2794 | . . . . . 6 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑;16) − 3)) |
26 | ackval3 46029 | . . . . . 6 ⊢ (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) | |
27 | ovex 7308 | . . . . . 6 ⊢ ((2↑;16) − 3) ∈ V | |
28 | 25, 26, 27 | fvmpt 6875 | . . . . 5 ⊢ (;13 ∈ ℕ0 → ((Ack‘3)‘;13) = ((2↑;16) − 3)) |
29 | 16, 28 | ax-mp 5 | . . . 4 ⊢ ((Ack‘3)‘;13) = ((2↑;16) − 3) |
30 | 14, 29 | eqtri 2766 | . . 3 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((2↑;16) − 3) |
31 | 8, 30 | eqtri 2766 | . 2 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((2↑;16) − 3) |
32 | 4, 31 | eqtri 2766 | 1 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 2c2 12028 3c3 12029 4c4 12030 6c6 12032 ℕ0cn0 12233 ;cdc 12437 ↑cexp 13782 Ackcack 46004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-seq 13722 df-exp 13783 df-itco 46005 df-ack 46006 |
This theorem is referenced by: ackval41 46041 ackval42 46042 |
Copyright terms: Public domain | W3C validator |