| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41a | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
| Ref | Expression |
|---|---|
| ackval41a | ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12211 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | fveq2i 6829 | . . 3 ⊢ (Ack‘4) = (Ack‘(3 + 1)) |
| 3 | 1e0p1 12651 | . . 3 ⊢ 1 = (0 + 1) | |
| 4 | 2, 3 | fveq12i 6832 | . 2 ⊢ ((Ack‘4)‘1) = ((Ack‘(3 + 1))‘(0 + 1)) |
| 5 | 3nn0 12420 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 6 | 0nn0 12417 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 7 | ackvalsucsucval 48677 | . . . 4 ⊢ ((3 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0))) | |
| 8 | 5, 6, 7 | mp2an 692 | . . 3 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0)) |
| 9 | 3p1e4 12286 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
| 10 | 9 | fveq2i 6829 | . . . . . . 7 ⊢ (Ack‘(3 + 1)) = (Ack‘4) |
| 11 | 10 | fveq1i 6827 | . . . . . 6 ⊢ ((Ack‘(3 + 1))‘0) = ((Ack‘4)‘0) |
| 12 | ackval40 48682 | . . . . . 6 ⊢ ((Ack‘4)‘0) = ;13 | |
| 13 | 11, 12 | eqtri 2752 | . . . . 5 ⊢ ((Ack‘(3 + 1))‘0) = ;13 |
| 14 | 13 | fveq2i 6829 | . . . 4 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((Ack‘3)‘;13) |
| 15 | 1nn0 12418 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 16 | 15, 5 | deccl 12624 | . . . . 5 ⊢ ;13 ∈ ℕ0 |
| 17 | oveq1 7360 | . . . . . . . . 9 ⊢ (𝑛 = ;13 → (𝑛 + 3) = (;13 + 3)) | |
| 18 | 17 | oveq2d 7369 | . . . . . . . 8 ⊢ (𝑛 = ;13 → (2↑(𝑛 + 3)) = (2↑(;13 + 3))) |
| 19 | 18 | oveq1d 7368 | . . . . . . 7 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑(;13 + 3)) − 3)) |
| 20 | eqid 2729 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
| 21 | 3p3e6 12293 | . . . . . . . . . 10 ⊢ (3 + 3) = 6 | |
| 22 | 15, 5, 5, 20, 21 | decaddi 12669 | . . . . . . . . 9 ⊢ (;13 + 3) = ;16 |
| 23 | 22 | oveq2i 7364 | . . . . . . . 8 ⊢ (2↑(;13 + 3)) = (2↑;16) |
| 24 | 23 | oveq1i 7363 | . . . . . . 7 ⊢ ((2↑(;13 + 3)) − 3) = ((2↑;16) − 3) |
| 25 | 19, 24 | eqtrdi 2780 | . . . . . 6 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑;16) − 3)) |
| 26 | ackval3 48672 | . . . . . 6 ⊢ (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) | |
| 27 | ovex 7386 | . . . . . 6 ⊢ ((2↑;16) − 3) ∈ V | |
| 28 | 25, 26, 27 | fvmpt 6934 | . . . . 5 ⊢ (;13 ∈ ℕ0 → ((Ack‘3)‘;13) = ((2↑;16) − 3)) |
| 29 | 16, 28 | ax-mp 5 | . . . 4 ⊢ ((Ack‘3)‘;13) = ((2↑;16) − 3) |
| 30 | 14, 29 | eqtri 2752 | . . 3 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((2↑;16) − 3) |
| 31 | 8, 30 | eqtri 2752 | . 2 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((2↑;16) − 3) |
| 32 | 4, 31 | eqtri 2752 | 1 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 − cmin 11365 2c2 12201 3c3 12202 4c4 12203 6c6 12205 ℕ0cn0 12402 ;cdc 12609 ↑cexp 13986 Ackcack 48647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-seq 13927 df-exp 13987 df-itco 48648 df-ack 48649 |
| This theorem is referenced by: ackval41 48684 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |