![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41a | Structured version Visualization version GIF version |
Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
Ref | Expression |
---|---|
ackval41a | ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12277 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | fveq2i 6895 | . . 3 ⊢ (Ack‘4) = (Ack‘(3 + 1)) |
3 | 1e0p1 12719 | . . 3 ⊢ 1 = (0 + 1) | |
4 | 2, 3 | fveq12i 6898 | . 2 ⊢ ((Ack‘4)‘1) = ((Ack‘(3 + 1))‘(0 + 1)) |
5 | 3nn0 12490 | . . . 4 ⊢ 3 ∈ ℕ0 | |
6 | 0nn0 12487 | . . . 4 ⊢ 0 ∈ ℕ0 | |
7 | ackvalsucsucval 47374 | . . . 4 ⊢ ((3 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0))) | |
8 | 5, 6, 7 | mp2an 691 | . . 3 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0)) |
9 | 3p1e4 12357 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
10 | 9 | fveq2i 6895 | . . . . . . 7 ⊢ (Ack‘(3 + 1)) = (Ack‘4) |
11 | 10 | fveq1i 6893 | . . . . . 6 ⊢ ((Ack‘(3 + 1))‘0) = ((Ack‘4)‘0) |
12 | ackval40 47379 | . . . . . 6 ⊢ ((Ack‘4)‘0) = ;13 | |
13 | 11, 12 | eqtri 2761 | . . . . 5 ⊢ ((Ack‘(3 + 1))‘0) = ;13 |
14 | 13 | fveq2i 6895 | . . . 4 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((Ack‘3)‘;13) |
15 | 1nn0 12488 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
16 | 15, 5 | deccl 12692 | . . . . 5 ⊢ ;13 ∈ ℕ0 |
17 | oveq1 7416 | . . . . . . . . 9 ⊢ (𝑛 = ;13 → (𝑛 + 3) = (;13 + 3)) | |
18 | 17 | oveq2d 7425 | . . . . . . . 8 ⊢ (𝑛 = ;13 → (2↑(𝑛 + 3)) = (2↑(;13 + 3))) |
19 | 18 | oveq1d 7424 | . . . . . . 7 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑(;13 + 3)) − 3)) |
20 | eqid 2733 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
21 | 3p3e6 12364 | . . . . . . . . . 10 ⊢ (3 + 3) = 6 | |
22 | 15, 5, 5, 20, 21 | decaddi 12737 | . . . . . . . . 9 ⊢ (;13 + 3) = ;16 |
23 | 22 | oveq2i 7420 | . . . . . . . 8 ⊢ (2↑(;13 + 3)) = (2↑;16) |
24 | 23 | oveq1i 7419 | . . . . . . 7 ⊢ ((2↑(;13 + 3)) − 3) = ((2↑;16) − 3) |
25 | 19, 24 | eqtrdi 2789 | . . . . . 6 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑;16) − 3)) |
26 | ackval3 47369 | . . . . . 6 ⊢ (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) | |
27 | ovex 7442 | . . . . . 6 ⊢ ((2↑;16) − 3) ∈ V | |
28 | 25, 26, 27 | fvmpt 6999 | . . . . 5 ⊢ (;13 ∈ ℕ0 → ((Ack‘3)‘;13) = ((2↑;16) − 3)) |
29 | 16, 28 | ax-mp 5 | . . . 4 ⊢ ((Ack‘3)‘;13) = ((2↑;16) − 3) |
30 | 14, 29 | eqtri 2761 | . . 3 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((2↑;16) − 3) |
31 | 8, 30 | eqtri 2761 | . 2 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((2↑;16) − 3) |
32 | 4, 31 | eqtri 2761 | 1 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 − cmin 11444 2c2 12267 3c3 12268 4c4 12269 6c6 12271 ℕ0cn0 12472 ;cdc 12677 ↑cexp 14027 Ackcack 47344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-seq 13967 df-exp 14028 df-itco 47345 df-ack 47346 |
This theorem is referenced by: ackval41 47381 ackval42 47382 |
Copyright terms: Public domain | W3C validator |