| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41a | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
| Ref | Expression |
|---|---|
| ackval41a | ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12199 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | fveq2i 6833 | . . 3 ⊢ (Ack‘4) = (Ack‘(3 + 1)) |
| 3 | 1e0p1 12638 | . . 3 ⊢ 1 = (0 + 1) | |
| 4 | 2, 3 | fveq12i 6836 | . 2 ⊢ ((Ack‘4)‘1) = ((Ack‘(3 + 1))‘(0 + 1)) |
| 5 | 3nn0 12408 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 6 | 0nn0 12405 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 7 | ackvalsucsucval 48816 | . . . 4 ⊢ ((3 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0))) | |
| 8 | 5, 6, 7 | mp2an 692 | . . 3 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0)) |
| 9 | 3p1e4 12274 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
| 10 | 9 | fveq2i 6833 | . . . . . . 7 ⊢ (Ack‘(3 + 1)) = (Ack‘4) |
| 11 | 10 | fveq1i 6831 | . . . . . 6 ⊢ ((Ack‘(3 + 1))‘0) = ((Ack‘4)‘0) |
| 12 | ackval40 48821 | . . . . . 6 ⊢ ((Ack‘4)‘0) = ;13 | |
| 13 | 11, 12 | eqtri 2756 | . . . . 5 ⊢ ((Ack‘(3 + 1))‘0) = ;13 |
| 14 | 13 | fveq2i 6833 | . . . 4 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((Ack‘3)‘;13) |
| 15 | 1nn0 12406 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 16 | 15, 5 | deccl 12611 | . . . . 5 ⊢ ;13 ∈ ℕ0 |
| 17 | oveq1 7361 | . . . . . . . . 9 ⊢ (𝑛 = ;13 → (𝑛 + 3) = (;13 + 3)) | |
| 18 | 17 | oveq2d 7370 | . . . . . . . 8 ⊢ (𝑛 = ;13 → (2↑(𝑛 + 3)) = (2↑(;13 + 3))) |
| 19 | 18 | oveq1d 7369 | . . . . . . 7 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑(;13 + 3)) − 3)) |
| 20 | eqid 2733 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
| 21 | 3p3e6 12281 | . . . . . . . . . 10 ⊢ (3 + 3) = 6 | |
| 22 | 15, 5, 5, 20, 21 | decaddi 12656 | . . . . . . . . 9 ⊢ (;13 + 3) = ;16 |
| 23 | 22 | oveq2i 7365 | . . . . . . . 8 ⊢ (2↑(;13 + 3)) = (2↑;16) |
| 24 | 23 | oveq1i 7364 | . . . . . . 7 ⊢ ((2↑(;13 + 3)) − 3) = ((2↑;16) − 3) |
| 25 | 19, 24 | eqtrdi 2784 | . . . . . 6 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑;16) − 3)) |
| 26 | ackval3 48811 | . . . . . 6 ⊢ (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) | |
| 27 | ovex 7387 | . . . . . 6 ⊢ ((2↑;16) − 3) ∈ V | |
| 28 | 25, 26, 27 | fvmpt 6937 | . . . . 5 ⊢ (;13 ∈ ℕ0 → ((Ack‘3)‘;13) = ((2↑;16) − 3)) |
| 29 | 16, 28 | ax-mp 5 | . . . 4 ⊢ ((Ack‘3)‘;13) = ((2↑;16) − 3) |
| 30 | 14, 29 | eqtri 2756 | . . 3 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((2↑;16) − 3) |
| 31 | 8, 30 | eqtri 2756 | . 2 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((2↑;16) − 3) |
| 32 | 4, 31 | eqtri 2756 | 1 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 − cmin 11353 2c2 12189 3c3 12190 4c4 12191 6c6 12193 ℕ0cn0 12390 ;cdc 12596 ↑cexp 13972 Ackcack 48786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-seq 13913 df-exp 13973 df-itco 48787 df-ack 48788 |
| This theorem is referenced by: ackval41 48823 ackval42 48824 |
| Copyright terms: Public domain | W3C validator |