| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41a | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
| Ref | Expression |
|---|---|
| ackval41a | ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12190 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | fveq2i 6825 | . . 3 ⊢ (Ack‘4) = (Ack‘(3 + 1)) |
| 3 | 1e0p1 12630 | . . 3 ⊢ 1 = (0 + 1) | |
| 4 | 2, 3 | fveq12i 6828 | . 2 ⊢ ((Ack‘4)‘1) = ((Ack‘(3 + 1))‘(0 + 1)) |
| 5 | 3nn0 12399 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 6 | 0nn0 12396 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 7 | ackvalsucsucval 48726 | . . . 4 ⊢ ((3 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0))) | |
| 8 | 5, 6, 7 | mp2an 692 | . . 3 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((Ack‘3)‘((Ack‘(3 + 1))‘0)) |
| 9 | 3p1e4 12265 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
| 10 | 9 | fveq2i 6825 | . . . . . . 7 ⊢ (Ack‘(3 + 1)) = (Ack‘4) |
| 11 | 10 | fveq1i 6823 | . . . . . 6 ⊢ ((Ack‘(3 + 1))‘0) = ((Ack‘4)‘0) |
| 12 | ackval40 48731 | . . . . . 6 ⊢ ((Ack‘4)‘0) = ;13 | |
| 13 | 11, 12 | eqtri 2754 | . . . . 5 ⊢ ((Ack‘(3 + 1))‘0) = ;13 |
| 14 | 13 | fveq2i 6825 | . . . 4 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((Ack‘3)‘;13) |
| 15 | 1nn0 12397 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 16 | 15, 5 | deccl 12603 | . . . . 5 ⊢ ;13 ∈ ℕ0 |
| 17 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑛 = ;13 → (𝑛 + 3) = (;13 + 3)) | |
| 18 | 17 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝑛 = ;13 → (2↑(𝑛 + 3)) = (2↑(;13 + 3))) |
| 19 | 18 | oveq1d 7361 | . . . . . . 7 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑(;13 + 3)) − 3)) |
| 20 | eqid 2731 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
| 21 | 3p3e6 12272 | . . . . . . . . . 10 ⊢ (3 + 3) = 6 | |
| 22 | 15, 5, 5, 20, 21 | decaddi 12648 | . . . . . . . . 9 ⊢ (;13 + 3) = ;16 |
| 23 | 22 | oveq2i 7357 | . . . . . . . 8 ⊢ (2↑(;13 + 3)) = (2↑;16) |
| 24 | 23 | oveq1i 7356 | . . . . . . 7 ⊢ ((2↑(;13 + 3)) − 3) = ((2↑;16) − 3) |
| 25 | 19, 24 | eqtrdi 2782 | . . . . . 6 ⊢ (𝑛 = ;13 → ((2↑(𝑛 + 3)) − 3) = ((2↑;16) − 3)) |
| 26 | ackval3 48721 | . . . . . 6 ⊢ (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) | |
| 27 | ovex 7379 | . . . . . 6 ⊢ ((2↑;16) − 3) ∈ V | |
| 28 | 25, 26, 27 | fvmpt 6929 | . . . . 5 ⊢ (;13 ∈ ℕ0 → ((Ack‘3)‘;13) = ((2↑;16) − 3)) |
| 29 | 16, 28 | ax-mp 5 | . . . 4 ⊢ ((Ack‘3)‘;13) = ((2↑;16) − 3) |
| 30 | 14, 29 | eqtri 2754 | . . 3 ⊢ ((Ack‘3)‘((Ack‘(3 + 1))‘0)) = ((2↑;16) − 3) |
| 31 | 8, 30 | eqtri 2754 | . 2 ⊢ ((Ack‘(3 + 1))‘(0 + 1)) = ((2↑;16) − 3) |
| 32 | 4, 31 | eqtri 2754 | 1 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 − cmin 11344 2c2 12180 3c3 12181 4c4 12182 6c6 12184 ℕ0cn0 12381 ;cdc 12588 ↑cexp 13968 Ackcack 48696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-seq 13909 df-exp 13969 df-itco 48697 df-ack 48698 |
| This theorem is referenced by: ackval41 48733 ackval42 48734 |
| Copyright terms: Public domain | W3C validator |