MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1fvn Structured version   Visualization version   GIF version

Theorem cats1fvn 14765
Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
cats1cld.1 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
cats1cli.2 𝑆 ∈ Word V
cats1fvn.3 (♯‘𝑆) = 𝑀
Assertion
Ref Expression
cats1fvn (𝑋𝑉 → (𝑇𝑀) = 𝑋)

Proof of Theorem cats1fvn
StepHypRef Expression
1 cats1cld.1 . . . 4 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
2 cats1fvn.3 . . . . . 6 (♯‘𝑆) = 𝑀
32oveq2i 7360 . . . . 5 (0 + (♯‘𝑆)) = (0 + 𝑀)
4 cats1cli.2 . . . . . . . . 9 𝑆 ∈ Word V
5 lencl 14440 . . . . . . . . 9 (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0)
64, 5ax-mp 5 . . . . . . . 8 (♯‘𝑆) ∈ ℕ0
72, 6eqeltrri 2825 . . . . . . 7 𝑀 ∈ ℕ0
87nn0cni 12396 . . . . . 6 𝑀 ∈ ℂ
98addlidi 11304 . . . . 5 (0 + 𝑀) = 𝑀
103, 9eqtr2i 2753 . . . 4 𝑀 = (0 + (♯‘𝑆))
111, 10fveq12i 6828 . . 3 (𝑇𝑀) = ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆)))
12 s1cli 14512 . . . 4 ⟨“𝑋”⟩ ∈ Word V
13 s1len 14513 . . . . . 6 (♯‘⟨“𝑋”⟩) = 1
14 1nn 12139 . . . . . 6 1 ∈ ℕ
1513, 14eqeltri 2824 . . . . 5 (♯‘⟨“𝑋”⟩) ∈ ℕ
16 lbfzo0 13602 . . . . 5 (0 ∈ (0..^(♯‘⟨“𝑋”⟩)) ↔ (♯‘⟨“𝑋”⟩) ∈ ℕ)
1715, 16mpbir 231 . . . 4 0 ∈ (0..^(♯‘⟨“𝑋”⟩))
18 ccatval3 14486 . . . 4 ((𝑆 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V ∧ 0 ∈ (0..^(♯‘⟨“𝑋”⟩))) → ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆))) = (⟨“𝑋”⟩‘0))
194, 12, 17, 18mp3an 1463 . . 3 ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆))) = (⟨“𝑋”⟩‘0)
2011, 19eqtri 2752 . 2 (𝑇𝑀) = (⟨“𝑋”⟩‘0)
21 s1fv 14517 . 2 (𝑋𝑉 → (⟨“𝑋”⟩‘0) = 𝑋)
2220, 21eqtrid 2776 1 (𝑋𝑉 → (𝑇𝑀) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  cn 12128  0cn0 12384  ..^cfzo 13557  chash 14237  Word cword 14420   ++ cconcat 14477  ⟨“cs1 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503
This theorem is referenced by:  s2fv1  14795  s3fv2  14800  s4fv3  14805  gpgprismgr4cycllem6  48084  gpgprismgr4cycllem7  48085  gpgprismgr4cycllem10  48088
  Copyright terms: Public domain W3C validator