![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cats1fvn | Structured version Visualization version GIF version |
Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
cats1cld.1 | ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) |
cats1cli.2 | ⊢ 𝑆 ∈ Word V |
cats1fvn.3 | ⊢ (♯‘𝑆) = 𝑀 |
Ref | Expression |
---|---|
cats1fvn | ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cats1cld.1 | . . . 4 ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) | |
2 | cats1fvn.3 | . . . . . 6 ⊢ (♯‘𝑆) = 𝑀 | |
3 | 2 | oveq2i 7442 | . . . . 5 ⊢ (0 + (♯‘𝑆)) = (0 + 𝑀) |
4 | cats1cli.2 | . . . . . . . . 9 ⊢ 𝑆 ∈ Word V | |
5 | lencl 14568 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (♯‘𝑆) ∈ ℕ0 |
7 | 2, 6 | eqeltrri 2836 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 |
8 | 7 | nn0cni 12536 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
9 | 8 | addlidi 11447 | . . . . 5 ⊢ (0 + 𝑀) = 𝑀 |
10 | 3, 9 | eqtr2i 2764 | . . . 4 ⊢ 𝑀 = (0 + (♯‘𝑆)) |
11 | 1, 10 | fveq12i 6913 | . . 3 ⊢ (𝑇‘𝑀) = ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) |
12 | s1cli 14640 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
13 | s1len 14641 | . . . . . 6 ⊢ (♯‘〈“𝑋”〉) = 1 | |
14 | 1nn 12275 | . . . . . 6 ⊢ 1 ∈ ℕ | |
15 | 13, 14 | eqeltri 2835 | . . . . 5 ⊢ (♯‘〈“𝑋”〉) ∈ ℕ |
16 | lbfzo0 13736 | . . . . 5 ⊢ (0 ∈ (0..^(♯‘〈“𝑋”〉)) ↔ (♯‘〈“𝑋”〉) ∈ ℕ) | |
17 | 15, 16 | mpbir 231 | . . . 4 ⊢ 0 ∈ (0..^(♯‘〈“𝑋”〉)) |
18 | ccatval3 14614 | . . . 4 ⊢ ((𝑆 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V ∧ 0 ∈ (0..^(♯‘〈“𝑋”〉))) → ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) = (〈“𝑋”〉‘0)) | |
19 | 4, 12, 17, 18 | mp3an 1460 | . . 3 ⊢ ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) = (〈“𝑋”〉‘0) |
20 | 11, 19 | eqtri 2763 | . 2 ⊢ (𝑇‘𝑀) = (〈“𝑋”〉‘0) |
21 | s1fv 14645 | . 2 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋”〉‘0) = 𝑋) | |
22 | 20, 21 | eqtrid 2787 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ℕcn 12264 ℕ0cn0 12524 ..^cfzo 13691 ♯chash 14366 Word cword 14549 ++ cconcat 14605 〈“cs1 14630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 |
This theorem is referenced by: s2fv1 14924 s3fv2 14929 s4fv3 14934 |
Copyright terms: Public domain | W3C validator |