| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cats1fvn | Structured version Visualization version GIF version | ||
| Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| cats1cld.1 | ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) |
| cats1cli.2 | ⊢ 𝑆 ∈ Word V |
| cats1fvn.3 | ⊢ (♯‘𝑆) = 𝑀 |
| Ref | Expression |
|---|---|
| cats1fvn | ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats1cld.1 | . . . 4 ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) | |
| 2 | cats1fvn.3 | . . . . . 6 ⊢ (♯‘𝑆) = 𝑀 | |
| 3 | 2 | oveq2i 7380 | . . . . 5 ⊢ (0 + (♯‘𝑆)) = (0 + 𝑀) |
| 4 | cats1cli.2 | . . . . . . . . 9 ⊢ 𝑆 ∈ Word V | |
| 5 | lencl 14474 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (♯‘𝑆) ∈ ℕ0 |
| 7 | 2, 6 | eqeltrri 2825 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 |
| 8 | 7 | nn0cni 12430 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 9 | 8 | addlidi 11338 | . . . . 5 ⊢ (0 + 𝑀) = 𝑀 |
| 10 | 3, 9 | eqtr2i 2753 | . . . 4 ⊢ 𝑀 = (0 + (♯‘𝑆)) |
| 11 | 1, 10 | fveq12i 6846 | . . 3 ⊢ (𝑇‘𝑀) = ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) |
| 12 | s1cli 14546 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 13 | s1len 14547 | . . . . . 6 ⊢ (♯‘〈“𝑋”〉) = 1 | |
| 14 | 1nn 12173 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 15 | 13, 14 | eqeltri 2824 | . . . . 5 ⊢ (♯‘〈“𝑋”〉) ∈ ℕ |
| 16 | lbfzo0 13636 | . . . . 5 ⊢ (0 ∈ (0..^(♯‘〈“𝑋”〉)) ↔ (♯‘〈“𝑋”〉) ∈ ℕ) | |
| 17 | 15, 16 | mpbir 231 | . . . 4 ⊢ 0 ∈ (0..^(♯‘〈“𝑋”〉)) |
| 18 | ccatval3 14520 | . . . 4 ⊢ ((𝑆 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V ∧ 0 ∈ (0..^(♯‘〈“𝑋”〉))) → ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) = (〈“𝑋”〉‘0)) | |
| 19 | 4, 12, 17, 18 | mp3an 1463 | . . 3 ⊢ ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) = (〈“𝑋”〉‘0) |
| 20 | 11, 19 | eqtri 2752 | . 2 ⊢ (𝑇‘𝑀) = (〈“𝑋”〉‘0) |
| 21 | s1fv 14551 | . 2 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋”〉‘0) = 𝑋) | |
| 22 | 20, 21 | eqtrid 2776 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 ℕcn 12162 ℕ0cn0 12418 ..^cfzo 13591 ♯chash 14271 Word cword 14454 ++ cconcat 14511 〈“cs1 14536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 |
| This theorem is referenced by: s2fv1 14830 s3fv2 14835 s4fv3 14840 gpgprismgr4cycllem6 48063 gpgprismgr4cycllem7 48064 gpgprismgr4cycllem10 48067 |
| Copyright terms: Public domain | W3C validator |