| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cats1fvn | Structured version Visualization version GIF version | ||
| Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| cats1cld.1 | ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) |
| cats1cli.2 | ⊢ 𝑆 ∈ Word V |
| cats1fvn.3 | ⊢ (♯‘𝑆) = 𝑀 |
| Ref | Expression |
|---|---|
| cats1fvn | ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats1cld.1 | . . . 4 ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) | |
| 2 | cats1fvn.3 | . . . . . 6 ⊢ (♯‘𝑆) = 𝑀 | |
| 3 | 2 | oveq2i 7357 | . . . . 5 ⊢ (0 + (♯‘𝑆)) = (0 + 𝑀) |
| 4 | cats1cli.2 | . . . . . . . . 9 ⊢ 𝑆 ∈ Word V | |
| 5 | lencl 14440 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (♯‘𝑆) ∈ ℕ0 |
| 7 | 2, 6 | eqeltrri 2828 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 |
| 8 | 7 | nn0cni 12393 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 9 | 8 | addlidi 11301 | . . . . 5 ⊢ (0 + 𝑀) = 𝑀 |
| 10 | 3, 9 | eqtr2i 2755 | . . . 4 ⊢ 𝑀 = (0 + (♯‘𝑆)) |
| 11 | 1, 10 | fveq12i 6828 | . . 3 ⊢ (𝑇‘𝑀) = ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) |
| 12 | s1cli 14513 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 13 | s1len 14514 | . . . . . 6 ⊢ (♯‘〈“𝑋”〉) = 1 | |
| 14 | 1nn 12136 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 15 | 13, 14 | eqeltri 2827 | . . . . 5 ⊢ (♯‘〈“𝑋”〉) ∈ ℕ |
| 16 | lbfzo0 13599 | . . . . 5 ⊢ (0 ∈ (0..^(♯‘〈“𝑋”〉)) ↔ (♯‘〈“𝑋”〉) ∈ ℕ) | |
| 17 | 15, 16 | mpbir 231 | . . . 4 ⊢ 0 ∈ (0..^(♯‘〈“𝑋”〉)) |
| 18 | ccatval3 14486 | . . . 4 ⊢ ((𝑆 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V ∧ 0 ∈ (0..^(♯‘〈“𝑋”〉))) → ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) = (〈“𝑋”〉‘0)) | |
| 19 | 4, 12, 17, 18 | mp3an 1463 | . . 3 ⊢ ((𝑆 ++ 〈“𝑋”〉)‘(0 + (♯‘𝑆))) = (〈“𝑋”〉‘0) |
| 20 | 11, 19 | eqtri 2754 | . 2 ⊢ (𝑇‘𝑀) = (〈“𝑋”〉‘0) |
| 21 | s1fv 14518 | . 2 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋”〉‘0) = 𝑋) | |
| 22 | 20, 21 | eqtrid 2778 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 ℕcn 12125 ℕ0cn0 12381 ..^cfzo 13554 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 |
| This theorem is referenced by: s2fv1 14795 s3fv2 14800 s4fv3 14805 gpgprismgr4cycllem6 48139 gpgprismgr4cycllem7 48140 gpgprismgr4cycllem10 48143 |
| Copyright terms: Public domain | W3C validator |