MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1fvn Structured version   Visualization version   GIF version

Theorem cats1fvn 14815
Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
cats1cld.1 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
cats1cli.2 𝑆 ∈ Word V
cats1fvn.3 (♯‘𝑆) = 𝑀
Assertion
Ref Expression
cats1fvn (𝑋𝑉 → (𝑇𝑀) = 𝑋)

Proof of Theorem cats1fvn
StepHypRef Expression
1 cats1cld.1 . . . 4 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
2 cats1fvn.3 . . . . . 6 (♯‘𝑆) = 𝑀
32oveq2i 7416 . . . . 5 (0 + (♯‘𝑆)) = (0 + 𝑀)
4 cats1cli.2 . . . . . . . . 9 𝑆 ∈ Word V
5 lencl 14489 . . . . . . . . 9 (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0)
64, 5ax-mp 5 . . . . . . . 8 (♯‘𝑆) ∈ ℕ0
72, 6eqeltrri 2824 . . . . . . 7 𝑀 ∈ ℕ0
87nn0cni 12488 . . . . . 6 𝑀 ∈ ℂ
98addlidi 11406 . . . . 5 (0 + 𝑀) = 𝑀
103, 9eqtr2i 2755 . . . 4 𝑀 = (0 + (♯‘𝑆))
111, 10fveq12i 6891 . . 3 (𝑇𝑀) = ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆)))
12 s1cli 14561 . . . 4 ⟨“𝑋”⟩ ∈ Word V
13 s1len 14562 . . . . . 6 (♯‘⟨“𝑋”⟩) = 1
14 1nn 12227 . . . . . 6 1 ∈ ℕ
1513, 14eqeltri 2823 . . . . 5 (♯‘⟨“𝑋”⟩) ∈ ℕ
16 lbfzo0 13678 . . . . 5 (0 ∈ (0..^(♯‘⟨“𝑋”⟩)) ↔ (♯‘⟨“𝑋”⟩) ∈ ℕ)
1715, 16mpbir 230 . . . 4 0 ∈ (0..^(♯‘⟨“𝑋”⟩))
18 ccatval3 14535 . . . 4 ((𝑆 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V ∧ 0 ∈ (0..^(♯‘⟨“𝑋”⟩))) → ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆))) = (⟨“𝑋”⟩‘0))
194, 12, 17, 18mp3an 1457 . . 3 ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆))) = (⟨“𝑋”⟩‘0)
2011, 19eqtri 2754 . 2 (𝑇𝑀) = (⟨“𝑋”⟩‘0)
21 s1fv 14566 . 2 (𝑋𝑉 → (⟨“𝑋”⟩‘0) = 𝑋)
2220, 21eqtrid 2778 1 (𝑋𝑉 → (𝑇𝑀) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3468  cfv 6537  (class class class)co 7405  0cc0 11112  1c1 11113   + caddc 11115  cn 12216  0cn0 12476  ..^cfzo 13633  chash 14295  Word cword 14470   ++ cconcat 14526  ⟨“cs1 14551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-concat 14527  df-s1 14552
This theorem is referenced by:  s2fv1  14845  s3fv2  14850  s4fv3  14855
  Copyright terms: Public domain W3C validator