Proof of Theorem ackval42
| Step | Hyp | Ref
| Expression |
| 1 | | df-4 12331 |
. . . 4
⊢ 4 = (3 +
1) |
| 2 | 1 | fveq2i 6909 |
. . 3
⊢
(Ack‘4) = (Ack‘(3 + 1)) |
| 3 | | df-2 12329 |
. . 3
⊢ 2 = (1 +
1) |
| 4 | 2, 3 | fveq12i 6912 |
. 2
⊢
((Ack‘4)‘2) = ((Ack‘(3 + 1))‘(1 +
1)) |
| 5 | | 3nn0 12544 |
. . 3
⊢ 3 ∈
ℕ0 |
| 6 | | 1nn0 12542 |
. . 3
⊢ 1 ∈
ℕ0 |
| 7 | | ackvalsucsucval 48609 |
. . 3
⊢ ((3
∈ ℕ0 ∧ 1 ∈ ℕ0) →
((Ack‘(3 + 1))‘(1 + 1)) = ((Ack‘3)‘((Ack‘(3 +
1))‘1))) |
| 8 | 5, 6, 7 | mp2an 692 |
. 2
⊢
((Ack‘(3 + 1))‘(1 + 1)) =
((Ack‘3)‘((Ack‘(3 + 1))‘1)) |
| 9 | | 3p1e4 12411 |
. . . . . . 7
⊢ (3 + 1) =
4 |
| 10 | 9 | fveq2i 6909 |
. . . . . 6
⊢
(Ack‘(3 + 1)) = (Ack‘4) |
| 11 | 10 | fveq1i 6907 |
. . . . 5
⊢
((Ack‘(3 + 1))‘1) = ((Ack‘4)‘1) |
| 12 | | ackval41a 48615 |
. . . . 5
⊢
((Ack‘4)‘1) = ((2↑;16) − 3) |
| 13 | 11, 12 | eqtri 2765 |
. . . 4
⊢
((Ack‘(3 + 1))‘1) = ((2↑;16) − 3) |
| 14 | 13 | fveq2i 6909 |
. . 3
⊢
((Ack‘3)‘((Ack‘(3 + 1))‘1)) =
((Ack‘3)‘((2↑;16)
− 3)) |
| 15 | | 2cn 12341 |
. . . . 5
⊢ 2 ∈
ℂ |
| 16 | | 6nn0 12547 |
. . . . . 6
⊢ 6 ∈
ℕ0 |
| 17 | 6, 16 | deccl 12748 |
. . . . 5
⊢ ;16 ∈
ℕ0 |
| 18 | | expcl 14120 |
. . . . 5
⊢ ((2
∈ ℂ ∧ ;16 ∈
ℕ0) → (2↑;16) ∈ ℂ) |
| 19 | 15, 17, 18 | mp2an 692 |
. . . 4
⊢
(2↑;16) ∈
ℂ |
| 20 | | 3cn 12347 |
. . . 4
⊢ 3 ∈
ℂ |
| 21 | | ackval3 48604 |
. . . . 5
⊢
(Ack‘3) = (𝑛
∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) |
| 22 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑛 = ((2↑;16) − 3) → (𝑛 + 3) = (((2↑;16) − 3) + 3)) |
| 23 | | npcan 11517 |
. . . . . . . 8
⊢
(((2↑;16) ∈
ℂ ∧ 3 ∈ ℂ) → (((2↑;16) − 3) + 3) = (2↑;16)) |
| 24 | 22, 23 | sylan9eqr 2799 |
. . . . . . 7
⊢
((((2↑;16) ∈
ℂ ∧ 3 ∈ ℂ) ∧ 𝑛 = ((2↑;16) − 3)) → (𝑛 + 3) = (2↑;16)) |
| 25 | 24 | oveq2d 7447 |
. . . . . 6
⊢
((((2↑;16) ∈
ℂ ∧ 3 ∈ ℂ) ∧ 𝑛 = ((2↑;16) − 3)) → (2↑(𝑛 + 3)) = (2↑(2↑;16))) |
| 26 | 25 | oveq1d 7446 |
. . . . 5
⊢
((((2↑;16) ∈
ℂ ∧ 3 ∈ ℂ) ∧ 𝑛 = ((2↑;16) − 3)) → ((2↑(𝑛 + 3)) − 3) = ((2↑(2↑;16)) − 3)) |
| 27 | | 3re 12346 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
| 28 | | 4re 12350 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
| 29 | | 3lt4 12440 |
. . . . . . . . . 10
⊢ 3 <
4 |
| 30 | 27, 28, 29 | ltleii 11384 |
. . . . . . . . 9
⊢ 3 ≤
4 |
| 31 | | sq2 14236 |
. . . . . . . . 9
⊢
(2↑2) = 4 |
| 32 | 30, 31 | breqtrri 5170 |
. . . . . . . 8
⊢ 3 ≤
(2↑2) |
| 33 | | 2re 12340 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
| 34 | | 1le2 12475 |
. . . . . . . . 9
⊢ 1 ≤
2 |
| 35 | 17 | nn0zi 12642 |
. . . . . . . . . 10
⊢ ;16 ∈ ℤ |
| 36 | | 1nn 12277 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
| 37 | | 2nn0 12543 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ0 |
| 38 | | 9re 12365 |
. . . . . . . . . . . 12
⊢ 9 ∈
ℝ |
| 39 | | 2lt9 12471 |
. . . . . . . . . . . 12
⊢ 2 <
9 |
| 40 | 33, 38, 39 | ltleii 11384 |
. . . . . . . . . . 11
⊢ 2 ≤
9 |
| 41 | 36, 16, 37, 40 | declei 12769 |
. . . . . . . . . 10
⊢ 2 ≤
;16 |
| 42 | | 2z 12649 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
| 43 | 42 | eluz1i 12886 |
. . . . . . . . . 10
⊢ (;16 ∈
(ℤ≥‘2) ↔ (;16 ∈ ℤ ∧ 2 ≤ ;16)) |
| 44 | 35, 41, 43 | mpbir2an 711 |
. . . . . . . . 9
⊢ ;16 ∈
(ℤ≥‘2) |
| 45 | | leexp2a 14212 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ 1 ≤ 2 ∧ ;16 ∈ (ℤ≥‘2)) →
(2↑2) ≤ (2↑;16)) |
| 46 | 33, 34, 44, 45 | mp3an 1463 |
. . . . . . . 8
⊢
(2↑2) ≤ (2↑;16) |
| 47 | | 4nn0 12545 |
. . . . . . . . . . 11
⊢ 4 ∈
ℕ0 |
| 48 | 31, 47 | eqeltri 2837 |
. . . . . . . . . 10
⊢
(2↑2) ∈ ℕ0 |
| 49 | 48 | nn0rei 12537 |
. . . . . . . . 9
⊢
(2↑2) ∈ ℝ |
| 50 | 37, 17 | nn0expcli 14129 |
. . . . . . . . . 10
⊢
(2↑;16) ∈
ℕ0 |
| 51 | 50 | nn0rei 12537 |
. . . . . . . . 9
⊢
(2↑;16) ∈
ℝ |
| 52 | 27, 49, 51 | letri 11390 |
. . . . . . . 8
⊢ ((3 ≤
(2↑2) ∧ (2↑2) ≤ (2↑;16)) → 3 ≤ (2↑;16)) |
| 53 | 32, 46, 52 | mp2an 692 |
. . . . . . 7
⊢ 3 ≤
(2↑;16) |
| 54 | | nn0sub 12576 |
. . . . . . . 8
⊢ ((3
∈ ℕ0 ∧ (2↑;16) ∈ ℕ0) → (3 ≤
(2↑;16) ↔ ((2↑;16) − 3) ∈
ℕ0)) |
| 55 | 5, 50, 54 | mp2an 692 |
. . . . . . 7
⊢ (3 ≤
(2↑;16) ↔ ((2↑;16) − 3) ∈
ℕ0) |
| 56 | 53, 55 | mpbi 230 |
. . . . . 6
⊢
((2↑;16) − 3)
∈ ℕ0 |
| 57 | 56 | a1i 11 |
. . . . 5
⊢
(((2↑;16) ∈
ℂ ∧ 3 ∈ ℂ) → ((2↑;16) − 3) ∈
ℕ0) |
| 58 | | ovexd 7466 |
. . . . 5
⊢
(((2↑;16) ∈
ℂ ∧ 3 ∈ ℂ) → ((2↑(2↑;16)) − 3) ∈ V) |
| 59 | 21, 26, 57, 58 | fvmptd2 7024 |
. . . 4
⊢
(((2↑;16) ∈
ℂ ∧ 3 ∈ ℂ) → ((Ack‘3)‘((2↑;16) − 3)) =
((2↑(2↑;16)) −
3)) |
| 60 | 19, 20, 59 | mp2an 692 |
. . 3
⊢
((Ack‘3)‘((2↑;16) − 3)) = ((2↑(2↑;16)) − 3) |
| 61 | | 2exp16 17128 |
. . . . 5
⊢
(2↑;16) = ;;;;65536 |
| 62 | 61 | oveq2i 7442 |
. . . 4
⊢
(2↑(2↑;16)) =
(2↑;;;;65536) |
| 63 | 62 | oveq1i 7441 |
. . 3
⊢
((2↑(2↑;16))
− 3) = ((2↑;;;;65536)
− 3) |
| 64 | 14, 60, 63 | 3eqtri 2769 |
. 2
⊢
((Ack‘3)‘((Ack‘(3 + 1))‘1)) = ((2↑;;;;65536) − 3) |
| 65 | 4, 8, 64 | 3eqtri 2769 |
1
⊢
((Ack‘4)‘2) = ((2↑;;;;65536) − 3) |