Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ndxarg | Structured version Visualization version GIF version |
Description: Proof of ndxarg 16571 from bj-evalid 34797. (Contributed by BJ, 27-Dec-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
bj-ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
bj-ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11685 | . 2 ⊢ ℕ ∈ V | |
2 | bj-ndxarg.2 | . 2 ⊢ 𝑁 ∈ ℕ | |
3 | bj-ndxarg.1 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
4 | df-ndx 16549 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
5 | 3, 4 | fveq12i 6668 | . . 3 ⊢ (𝐸‘ndx) = (Slot 𝑁‘( I ↾ ℕ)) |
6 | bj-evalid 34797 | . . 3 ⊢ ((ℕ ∈ V ∧ 𝑁 ∈ ℕ) → (Slot 𝑁‘( I ↾ ℕ)) = 𝑁) | |
7 | 5, 6 | syl5eq 2805 | . 2 ⊢ ((ℕ ∈ V ∧ 𝑁 ∈ ℕ) → (𝐸‘ndx) = 𝑁) |
8 | 1, 2, 7 | mp2an 691 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 I cid 5432 ↾ cres 5529 ‘cfv 6339 ℕcn 11679 ndxcnx 16543 Slot cslot 16545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-1cn 10638 ax-addcl 10640 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-nn 11680 df-ndx 16549 df-slot 16550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |