![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2wlkond | Structured version Visualization version GIF version |
Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
2wlkd.p | β’ π = β¨βπ΄π΅πΆββ© |
2wlkd.f | β’ πΉ = β¨βπ½πΎββ© |
2wlkd.s | β’ (π β (π΄ β π β§ π΅ β π β§ πΆ β π)) |
2wlkd.n | β’ (π β (π΄ β π΅ β§ π΅ β πΆ)) |
2wlkd.e | β’ (π β ({π΄, π΅} β (πΌβπ½) β§ {π΅, πΆ} β (πΌβπΎ))) |
2wlkd.v | β’ π = (VtxβπΊ) |
2wlkd.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
2wlkond | β’ (π β πΉ(π΄(WalksOnβπΊ)πΆ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 β’ π = β¨βπ΄π΅πΆββ© | |
2 | 2wlkd.f | . . 3 β’ πΉ = β¨βπ½πΎββ© | |
3 | 2wlkd.s | . . 3 β’ (π β (π΄ β π β§ π΅ β π β§ πΆ β π)) | |
4 | 2wlkd.n | . . 3 β’ (π β (π΄ β π΅ β§ π΅ β πΆ)) | |
5 | 2wlkd.e | . . 3 β’ (π β ({π΄, π΅} β (πΌβπ½) β§ {π΅, πΆ} β (πΌβπΎ))) | |
6 | 2wlkd.v | . . 3 β’ π = (VtxβπΊ) | |
7 | 2wlkd.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkd 29458 | . 2 β’ (π β πΉ(WalksβπΊ)π) |
9 | 3 | simp1d 1141 | . . 3 β’ (π β π΄ β π) |
10 | 1 | fveq1i 6892 | . . . 4 β’ (πβ0) = (β¨βπ΄π΅πΆββ©β0) |
11 | s3fv0 14847 | . . . 4 β’ (π΄ β π β (β¨βπ΄π΅πΆββ©β0) = π΄) | |
12 | 10, 11 | eqtrid 2783 | . . 3 β’ (π΄ β π β (πβ0) = π΄) |
13 | 9, 12 | syl 17 | . 2 β’ (π β (πβ0) = π΄) |
14 | 2 | fveq2i 6894 | . . . . 5 β’ (β―βπΉ) = (β―ββ¨βπ½πΎββ©) |
15 | s2len 14845 | . . . . 5 β’ (β―ββ¨βπ½πΎββ©) = 2 | |
16 | 14, 15 | eqtri 2759 | . . . 4 β’ (β―βπΉ) = 2 |
17 | 1, 16 | fveq12i 6897 | . . 3 β’ (πβ(β―βπΉ)) = (β¨βπ΄π΅πΆββ©β2) |
18 | 3 | simp3d 1143 | . . . 4 β’ (π β πΆ β π) |
19 | s3fv2 14849 | . . . 4 β’ (πΆ β π β (β¨βπ΄π΅πΆββ©β2) = πΆ) | |
20 | 18, 19 | syl 17 | . . 3 β’ (π β (β¨βπ΄π΅πΆββ©β2) = πΆ) |
21 | 17, 20 | eqtrid 2783 | . 2 β’ (π β (πβ(β―βπΉ)) = πΆ) |
22 | 3simpb 1148 | . . . 4 β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β (π΄ β π β§ πΆ β π)) | |
23 | 3, 22 | syl 17 | . . 3 β’ (π β (π΄ β π β§ πΆ β π)) |
24 | s2cli 14836 | . . . . 5 β’ β¨βπ½πΎββ© β Word V | |
25 | 2, 24 | eqeltri 2828 | . . . 4 β’ πΉ β Word V |
26 | s3cli 14837 | . . . . 5 β’ β¨βπ΄π΅πΆββ© β Word V | |
27 | 1, 26 | eqeltri 2828 | . . . 4 β’ π β Word V |
28 | 25, 27 | pm3.2i 470 | . . 3 β’ (πΉ β Word V β§ π β Word V) |
29 | 6 | iswlkon 29182 | . . 3 β’ (((π΄ β π β§ πΆ β π) β§ (πΉ β Word V β§ π β Word V)) β (πΉ(π΄(WalksOnβπΊ)πΆ)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = πΆ))) |
30 | 23, 28, 29 | sylancl 585 | . 2 β’ (π β (πΉ(π΄(WalksOnβπΊ)πΆ)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = πΆ))) |
31 | 8, 13, 21, 30 | mpbir3and 1341 | 1 β’ (π β πΉ(π΄(WalksOnβπΊ)πΆ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 Vcvv 3473 β wss 3948 {cpr 4630 class class class wbr 5148 βcfv 6543 (class class class)co 7412 0cc0 11113 2c2 12272 β―chash 14295 Word cword 14469 β¨βcs2 14797 β¨βcs3 14798 Vtxcvtx 28524 iEdgciedg 28525 Walkscwlks 29121 WalksOncwlkson 29122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-s2 14804 df-s3 14805 df-wlks 29124 df-wlkson 29125 |
This theorem is referenced by: 2trlond 29461 umgr2adedgwlkon 29468 |
Copyright terms: Public domain | W3C validator |