| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlkond | Structured version Visualization version GIF version | ||
| Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| 2wlkond | ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
| 6 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkd 29899 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 9 | 3 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 10 | 1 | fveq1i 6827 | . . . 4 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
| 11 | s3fv0 14816 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
| 12 | 10, 11 | eqtrid 2776 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
| 13 | 9, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑃‘0) = 𝐴) |
| 14 | 2 | fveq2i 6829 | . . . . 5 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
| 15 | s2len 14814 | . . . . 5 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
| 16 | 14, 15 | eqtri 2752 | . . . 4 ⊢ (♯‘𝐹) = 2 |
| 17 | 1, 16 | fveq12i 6832 | . . 3 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝐴𝐵𝐶”〉‘2) |
| 18 | 3 | simp3d 1144 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 19 | s3fv2 14818 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
| 21 | 17, 20 | eqtrid 2776 | . 2 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = 𝐶) |
| 22 | 3simpb 1149 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 23 | 3, 22 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 24 | s2cli 14805 | . . . . 5 ⊢ 〈“𝐽𝐾”〉 ∈ Word V | |
| 25 | 2, 24 | eqeltri 2824 | . . . 4 ⊢ 𝐹 ∈ Word V |
| 26 | s3cli 14806 | . . . . 5 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
| 27 | 1, 26 | eqeltri 2824 | . . . 4 ⊢ 𝑃 ∈ Word V |
| 28 | 25, 27 | pm3.2i 470 | . . 3 ⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) |
| 29 | 6 | iswlkon 29619 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
| 30 | 23, 28, 29 | sylancl 586 | . 2 ⊢ (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
| 31 | 8, 13, 21, 30 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ⊆ wss 3905 {cpr 4581 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 2c2 12201 ♯chash 14255 Word cword 14438 〈“cs2 14766 〈“cs3 14767 Vtxcvtx 28959 iEdgciedg 28960 Walkscwlks 29560 WalksOncwlkson 29561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-wlks 29563 df-wlkson 29564 |
| This theorem is referenced by: 2trlond 29902 umgr2adedgwlkon 29909 |
| Copyright terms: Public domain | W3C validator |