Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2wlkond | Structured version Visualization version GIF version |
Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
2wlkond | ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkd 28301 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
9 | 3 | simp1d 1141 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
10 | 1 | fveq1i 6775 | . . . 4 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
11 | s3fv0 14604 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
12 | 10, 11 | eqtrid 2790 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
13 | 9, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑃‘0) = 𝐴) |
14 | 2 | fveq2i 6777 | . . . . 5 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
15 | s2len 14602 | . . . . 5 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
16 | 14, 15 | eqtri 2766 | . . . 4 ⊢ (♯‘𝐹) = 2 |
17 | 1, 16 | fveq12i 6780 | . . 3 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝐴𝐵𝐶”〉‘2) |
18 | 3 | simp3d 1143 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
19 | s3fv2 14606 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
21 | 17, 20 | eqtrid 2790 | . 2 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = 𝐶) |
22 | 3simpb 1148 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
23 | 3, 22 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
24 | s2cli 14593 | . . . . 5 ⊢ 〈“𝐽𝐾”〉 ∈ Word V | |
25 | 2, 24 | eqeltri 2835 | . . . 4 ⊢ 𝐹 ∈ Word V |
26 | s3cli 14594 | . . . . 5 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
27 | 1, 26 | eqeltri 2835 | . . . 4 ⊢ 𝑃 ∈ Word V |
28 | 25, 27 | pm3.2i 471 | . . 3 ⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) |
29 | 6 | iswlkon 28025 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
30 | 23, 28, 29 | sylancl 586 | . 2 ⊢ (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
31 | 8, 13, 21, 30 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ⊆ wss 3887 {cpr 4563 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 2c2 12028 ♯chash 14044 Word cword 14217 〈“cs2 14554 〈“cs3 14555 Vtxcvtx 27366 iEdgciedg 27367 Walkscwlks 27963 WalksOncwlkson 27964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-wlks 27966 df-wlkson 27967 |
This theorem is referenced by: 2trlond 28304 umgr2adedgwlkon 28311 |
Copyright terms: Public domain | W3C validator |