Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2wlkond | Structured version Visualization version GIF version |
Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
2wlkond | ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkd 28202 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
9 | 3 | simp1d 1140 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
10 | 1 | fveq1i 6757 | . . . 4 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
11 | s3fv0 14532 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
12 | 10, 11 | syl5eq 2791 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
13 | 9, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑃‘0) = 𝐴) |
14 | 2 | fveq2i 6759 | . . . . 5 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
15 | s2len 14530 | . . . . 5 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
16 | 14, 15 | eqtri 2766 | . . . 4 ⊢ (♯‘𝐹) = 2 |
17 | 1, 16 | fveq12i 6762 | . . 3 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝐴𝐵𝐶”〉‘2) |
18 | 3 | simp3d 1142 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
19 | s3fv2 14534 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
21 | 17, 20 | syl5eq 2791 | . 2 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = 𝐶) |
22 | 3simpb 1147 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
23 | 3, 22 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
24 | s2cli 14521 | . . . . 5 ⊢ 〈“𝐽𝐾”〉 ∈ Word V | |
25 | 2, 24 | eqeltri 2835 | . . . 4 ⊢ 𝐹 ∈ Word V |
26 | s3cli 14522 | . . . . 5 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
27 | 1, 26 | eqeltri 2835 | . . . 4 ⊢ 𝑃 ∈ Word V |
28 | 25, 27 | pm3.2i 470 | . . 3 ⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) |
29 | 6 | iswlkon 27927 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
30 | 23, 28, 29 | sylancl 585 | . 2 ⊢ (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
31 | 8, 13, 21, 30 | mpbir3and 1340 | 1 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 {cpr 4560 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 2c2 11958 ♯chash 13972 Word cword 14145 〈“cs2 14482 〈“cs3 14483 Vtxcvtx 27269 iEdgciedg 27270 Walkscwlks 27866 WalksOncwlkson 27867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-wlks 27869 df-wlkson 27870 |
This theorem is referenced by: 2trlond 28205 umgr2adedgwlkon 28212 |
Copyright terms: Public domain | W3C validator |