MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2 Structured version   Visualization version   GIF version

Theorem sadadd2 16019
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadadd2 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 7221 . . . . . . . . . . 11 (𝑥 = 0 → (0..^𝑥) = (0..^0))
3 fzo0 13266 . . . . . . . . . . 11 (0..^0) = ∅
42, 3eqtrdi 2794 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = ∅)
54ineq2d 4127 . . . . . . . . 9 (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ ∅))
6 in0 4306 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ ∅) = ∅
75, 6eqtrdi 2794 . . . . . . . 8 (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ∅)
87fveq2d 6721 . . . . . . 7 (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘∅))
9 sadcadd.k . . . . . . . . 9 𝐾 = (bits ↾ ℕ0)
10 0nn0 12105 . . . . . . . . . . 11 0 ∈ ℕ0
11 fvres 6736 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
1210, 11ax-mp 5 . . . . . . . . . 10 ((bits ↾ ℕ0)‘0) = (bits‘0)
13 0bits 15998 . . . . . . . . . 10 (bits‘0) = ∅
1412, 13eqtr2i 2766 . . . . . . . . 9 ∅ = ((bits ↾ ℕ0)‘0)
159, 14fveq12i 6723 . . . . . . . 8 (𝐾‘∅) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0))
16 bitsf1o 16004 . . . . . . . . 9 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnvfv1 7087 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ 0 ∈ ℕ0) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0)
1816, 10, 17mp2an 692 . . . . . . . 8 ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0
1915, 18eqtri 2765 . . . . . . 7 (𝐾‘∅) = 0
208, 19eqtrdi 2794 . . . . . 6 (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = 0)
21 fveq2 6717 . . . . . . . 8 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
2221eleq2d 2823 . . . . . . 7 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
23 oveq2 7221 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = (2↑0))
2422, 23ifbieq1d 4463 . . . . . 6 (𝑥 = 0 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘0), (2↑0), 0))
2520, 24oveq12d 7231 . . . . 5 (𝑥 = 0 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)))
264ineq2d 4127 . . . . . . . . . 10 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅))
27 in0 4306 . . . . . . . . . 10 (𝐴 ∩ ∅) = ∅
2826, 27eqtrdi 2794 . . . . . . . . 9 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅)
2928fveq2d 6721 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅))
3029, 19eqtrdi 2794 . . . . . . 7 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0)
314ineq2d 4127 . . . . . . . . . 10 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅))
32 in0 4306 . . . . . . . . . 10 (𝐵 ∩ ∅) = ∅
3331, 32eqtrdi 2794 . . . . . . . . 9 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅)
3433fveq2d 6721 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅))
3534, 19eqtrdi 2794 . . . . . . 7 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0)
3630, 35oveq12d 7231 . . . . . 6 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0))
37 00id 11007 . . . . . 6 (0 + 0) = 0
3836, 37eqtrdi 2794 . . . . 5 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0)
3925, 38eqeq12d 2753 . . . 4 (𝑥 = 0 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0))
4039imbi2d 344 . . 3 (𝑥 = 0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0)))
41 oveq2 7221 . . . . . . . 8 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
4241ineq2d 4127 . . . . . . 7 (𝑥 = 𝑘 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑘)))
4342fveq2d 6721 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))))
44 fveq2 6717 . . . . . . . 8 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
4544eleq2d 2823 . . . . . . 7 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
46 oveq2 7221 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
4745, 46ifbieq1d 4463 . . . . . 6 (𝑥 = 𝑘 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0))
4843, 47oveq12d 7231 . . . . 5 (𝑥 = 𝑘 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)))
4941ineq2d 4127 . . . . . . 7 (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘)))
5049fveq2d 6721 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘))))
5141ineq2d 4127 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘)))
5251fveq2d 6721 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘))))
5350, 52oveq12d 7231 . . . . 5 (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
5448, 53eqeq12d 2753 . . . 4 (𝑥 = 𝑘 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
5554imbi2d 344 . . 3 (𝑥 = 𝑘 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))))
56 oveq2 7221 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
5756ineq2d 4127 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1))))
5857fveq2d 6721 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))))
59 fveq2 6717 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
6059eleq2d 2823 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
61 oveq2 7221 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
6260, 61ifbieq1d 4463 . . . . . 6 (𝑥 = (𝑘 + 1) → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0))
6358, 62oveq12d 7231 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)))
6456ineq2d 4127 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1))))
6564fveq2d 6721 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))))
6656ineq2d 4127 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1))))
6766fveq2d 6721 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))
6865, 67oveq12d 7231 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
6963, 68eqeq12d 2753 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
7069imbi2d 344 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
71 oveq2 7221 . . . . . . . 8 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
7271ineq2d 4127 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7372fveq2d 6721 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
74 fveq2 6717 . . . . . . . 8 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
7574eleq2d 2823 . . . . . . 7 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
76 oveq2 7221 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
7775, 76ifbieq1d 4463 . . . . . 6 (𝑥 = 𝑁 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
7873, 77oveq12d 7231 . . . . 5 (𝑥 = 𝑁 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
7971ineq2d 4127 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁)))
8079fveq2d 6721 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁))))
8171ineq2d 4127 . . . . . . 7 (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁)))
8281fveq2d 6721 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁))))
8380, 82oveq12d 7231 . . . . 5 (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
8478, 83eqeq12d 2753 . . . 4 (𝑥 = 𝑁 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
8584imbi2d 344 . . 3 (𝑥 = 𝑁 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
86 sadval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
87 sadval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
88 sadval.c . . . . . . 7 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8986, 87, 88sadc0 16013 . . . . . 6 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
9089iffalsed 4450 . . . . 5 (𝜑 → if(∅ ∈ (𝐶‘0), (2↑0), 0) = 0)
9190oveq2d 7229 . . . 4 (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = (0 + 0))
9291, 37eqtrdi 2794 . . 3 (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0)
9386ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐴 ⊆ ℕ0)
9487ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐵 ⊆ ℕ0)
95 simplr 769 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝑘 ∈ ℕ0)
96 simpr 488 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
9793, 94, 88, 95, 9, 96sadadd2lem 16018 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
9897ex 416 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
9998expcom 417 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
10099a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
10140, 55, 70, 85, 92, 100nn0ind 12272 . 2 (𝑁 ∈ ℕ0 → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
1021, 101mpcom 38 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  caddwcad 1613  wcel 2110  cin 3865  wss 3866  c0 4237  ifcif 4439  𝒫 cpw 4513  cmpt 5135  ccnv 5550  cres 5553  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  cmpo 7215  1oc1o 8195  2oc2o 8196  Fincfn 8626  0cc0 10729  1c1 10730   + caddc 10732  cmin 11062  2c2 11885  0cn0 12090  ..^cfzo 13238  seqcseq 13574  cexp 13635  bitscbits 15978   sadd csad 15979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-xor 1508  df-tru 1546  df-fal 1556  df-had 1600  df-cad 1614  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-dvds 15816  df-bits 15981  df-sad 16010
This theorem is referenced by:  sadadd3  16020
  Copyright terms: Public domain W3C validator