| Step | Hyp | Ref
| Expression |
| 1 | | sadcp1.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (0..^𝑥) = (0..^0)) |
| 3 | | fzo0 13705 |
. . . . . . . . . . 11
⊢ (0..^0) =
∅ |
| 4 | 2, 3 | eqtrdi 2787 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (0..^𝑥) = ∅) |
| 5 | 4 | ineq2d 4200 |
. . . . . . . . 9
⊢ (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ ∅)) |
| 6 | | in0 4375 |
. . . . . . . . 9
⊢ ((𝐴 sadd 𝐵) ∩ ∅) = ∅ |
| 7 | 5, 6 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ∅) |
| 8 | 7 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘∅)) |
| 9 | | sadcadd.k |
. . . . . . . . 9
⊢ 𝐾 = ◡(bits ↾
ℕ0) |
| 10 | | 0nn0 12521 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
| 11 | | fvres 6900 |
. . . . . . . . . . 11
⊢ (0 ∈
ℕ0 → ((bits ↾ ℕ0)‘0) =
(bits‘0)) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((bits
↾ ℕ0)‘0) = (bits‘0) |
| 13 | | 0bits 16463 |
. . . . . . . . . 10
⊢
(bits‘0) = ∅ |
| 14 | 12, 13 | eqtr2i 2760 |
. . . . . . . . 9
⊢ ∅ =
((bits ↾ ℕ0)‘0) |
| 15 | 9, 14 | fveq12i 6887 |
. . . . . . . 8
⊢ (𝐾‘∅) = (◡(bits ↾
ℕ0)‘((bits ↾
ℕ0)‘0)) |
| 16 | | bitsf1o 16469 |
. . . . . . . . 9
⊢ (bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin) |
| 17 | | f1ocnvfv1 7274 |
. . . . . . . . 9
⊢ (((bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin)
∧ 0 ∈ ℕ0) → (◡(bits ↾
ℕ0)‘((bits ↾ ℕ0)‘0)) =
0) |
| 18 | 16, 10, 17 | mp2an 692 |
. . . . . . . 8
⊢ (◡(bits ↾
ℕ0)‘((bits ↾ ℕ0)‘0)) =
0 |
| 19 | 15, 18 | eqtri 2759 |
. . . . . . 7
⊢ (𝐾‘∅) =
0 |
| 20 | 8, 19 | eqtrdi 2787 |
. . . . . 6
⊢ (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = 0) |
| 21 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝐶‘𝑥) = (𝐶‘0)) |
| 22 | 21 | eleq2d 2821 |
. . . . . . 7
⊢ (𝑥 = 0 → (∅ ∈
(𝐶‘𝑥) ↔ ∅ ∈ (𝐶‘0))) |
| 23 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 0 → (2↑𝑥) = (2↑0)) |
| 24 | 22, 23 | ifbieq1d 4530 |
. . . . . 6
⊢ (𝑥 = 0 → if(∅ ∈
(𝐶‘𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘0), (2↑0), 0)) |
| 25 | 20, 24 | oveq12d 7428 |
. . . . 5
⊢ (𝑥 = 0 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = (0 + if(∅ ∈ (𝐶‘0), (2↑0),
0))) |
| 26 | 4 | ineq2d 4200 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅)) |
| 27 | | in0 4375 |
. . . . . . . . . 10
⊢ (𝐴 ∩ ∅) =
∅ |
| 28 | 26, 27 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅) |
| 29 | 28 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅)) |
| 30 | 29, 19 | eqtrdi 2787 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0) |
| 31 | 4 | ineq2d 4200 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅)) |
| 32 | | in0 4375 |
. . . . . . . . . 10
⊢ (𝐵 ∩ ∅) =
∅ |
| 33 | 31, 32 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅) |
| 34 | 33 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅)) |
| 35 | 34, 19 | eqtrdi 2787 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0) |
| 36 | 30, 35 | oveq12d 7428 |
. . . . . 6
⊢ (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0)) |
| 37 | | 00id 11415 |
. . . . . 6
⊢ (0 + 0) =
0 |
| 38 | 36, 37 | eqtrdi 2787 |
. . . . 5
⊢ (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0) |
| 39 | 25, 38 | eqeq12d 2752 |
. . . 4
⊢ (𝑥 = 0 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) =
0)) |
| 40 | 39 | imbi2d 340 |
. . 3
⊢ (𝑥 = 0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) =
0))) |
| 41 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘)) |
| 42 | 41 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑘))) |
| 43 | 42 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘)))) |
| 44 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝐶‘𝑥) = (𝐶‘𝑘)) |
| 45 | 44 | eleq2d 2821 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (∅ ∈ (𝐶‘𝑥) ↔ ∅ ∈ (𝐶‘𝑘))) |
| 46 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘)) |
| 47 | 45, 46 | ifbieq1d 4530 |
. . . . . 6
⊢ (𝑥 = 𝑘 → if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) |
| 48 | 43, 47 | oveq12d 7428 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0))) |
| 49 | 41 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘))) |
| 50 | 49 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘)))) |
| 51 | 41 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘))) |
| 52 | 51 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘)))) |
| 53 | 50, 52 | oveq12d 7428 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) |
| 54 | 48, 53 | eqeq12d 2752 |
. . . 4
⊢ (𝑥 = 𝑘 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) |
| 55 | 54 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑘 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))) |
| 56 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1))) |
| 57 | 56 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) |
| 58 | 57 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1))))) |
| 59 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (𝐶‘𝑥) = (𝐶‘(𝑘 + 1))) |
| 60 | 59 | eleq2d 2821 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶‘𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1)))) |
| 61 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1))) |
| 62 | 60, 61 | ifbieq1d 4530 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) |
| 63 | 58, 62 | oveq12d 7428 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0))) |
| 64 | 56 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1)))) |
| 65 | 64 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1))))) |
| 66 | 56 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1)))) |
| 67 | 66 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))) |
| 68 | 65, 67 | oveq12d 7428 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))) |
| 69 | 63, 68 | eqeq12d 2752 |
. . . 4
⊢ (𝑥 = (𝑘 + 1) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))) |
| 70 | 69 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))) |
| 71 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁)) |
| 72 | 71 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁))) |
| 73 | 72 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) |
| 74 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝐶‘𝑥) = (𝐶‘𝑁)) |
| 75 | 74 | eleq2d 2821 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (∅ ∈ (𝐶‘𝑥) ↔ ∅ ∈ (𝐶‘𝑁))) |
| 76 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁)) |
| 77 | 75, 76 | ifbieq1d 4530 |
. . . . . 6
⊢ (𝑥 = 𝑁 → if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) |
| 78 | 73, 77 | oveq12d 7428 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0))) |
| 79 | 71 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁))) |
| 80 | 79 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁)))) |
| 81 | 71 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁))) |
| 82 | 81 | fveq2d 6885 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁)))) |
| 83 | 80, 82 | oveq12d 7428 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) |
| 84 | 78, 83 | eqeq12d 2752 |
. . . 4
⊢ (𝑥 = 𝑁 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) |
| 85 | 84 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))) |
| 86 | | sadval.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
| 87 | | sadval.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
| 88 | | sadval.c |
. . . . . . 7
⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
| 89 | 86, 87, 88 | sadc0 16478 |
. . . . . 6
⊢ (𝜑 → ¬ ∅ ∈
(𝐶‘0)) |
| 90 | 89 | iffalsed 4516 |
. . . . 5
⊢ (𝜑 → if(∅ ∈ (𝐶‘0), (2↑0), 0) =
0) |
| 91 | 90 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (0 + if(∅ ∈
(𝐶‘0), (2↑0),
0)) = (0 + 0)) |
| 92 | 91, 37 | eqtrdi 2787 |
. . 3
⊢ (𝜑 → (0 + if(∅ ∈
(𝐶‘0), (2↑0),
0)) = 0) |
| 93 | 86 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐴 ⊆
ℕ0) |
| 94 | 87 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐵 ⊆
ℕ0) |
| 95 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝑘 ∈ ℕ0) |
| 96 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) |
| 97 | 93, 94, 88, 95, 9, 96 | sadadd2lem 16483 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))) |
| 98 | 97 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))) |
| 99 | 98 | expcom 413 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))) |
| 100 | 99 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))) |
| 101 | 40, 55, 70, 85, 92, 100 | nn0ind 12693 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) |
| 102 | 1, 101 | mpcom 38 |
1
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) |