Step | Hyp | Ref
| Expression |
1 | | sadcp1.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | oveq2 7221 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (0..^𝑥) = (0..^0)) |
3 | | fzo0 13266 |
. . . . . . . . . . 11
⊢ (0..^0) =
∅ |
4 | 2, 3 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (0..^𝑥) = ∅) |
5 | 4 | ineq2d 4127 |
. . . . . . . . 9
⊢ (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ ∅)) |
6 | | in0 4306 |
. . . . . . . . 9
⊢ ((𝐴 sadd 𝐵) ∩ ∅) = ∅ |
7 | 5, 6 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ∅) |
8 | 7 | fveq2d 6721 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘∅)) |
9 | | sadcadd.k |
. . . . . . . . 9
⊢ 𝐾 = ◡(bits ↾
ℕ0) |
10 | | 0nn0 12105 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
11 | | fvres 6736 |
. . . . . . . . . . 11
⊢ (0 ∈
ℕ0 → ((bits ↾ ℕ0)‘0) =
(bits‘0)) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((bits
↾ ℕ0)‘0) = (bits‘0) |
13 | | 0bits 15998 |
. . . . . . . . . 10
⊢
(bits‘0) = ∅ |
14 | 12, 13 | eqtr2i 2766 |
. . . . . . . . 9
⊢ ∅ =
((bits ↾ ℕ0)‘0) |
15 | 9, 14 | fveq12i 6723 |
. . . . . . . 8
⊢ (𝐾‘∅) = (◡(bits ↾
ℕ0)‘((bits ↾
ℕ0)‘0)) |
16 | | bitsf1o 16004 |
. . . . . . . . 9
⊢ (bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin) |
17 | | f1ocnvfv1 7087 |
. . . . . . . . 9
⊢ (((bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin)
∧ 0 ∈ ℕ0) → (◡(bits ↾
ℕ0)‘((bits ↾ ℕ0)‘0)) =
0) |
18 | 16, 10, 17 | mp2an 692 |
. . . . . . . 8
⊢ (◡(bits ↾
ℕ0)‘((bits ↾ ℕ0)‘0)) =
0 |
19 | 15, 18 | eqtri 2765 |
. . . . . . 7
⊢ (𝐾‘∅) =
0 |
20 | 8, 19 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = 0) |
21 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝐶‘𝑥) = (𝐶‘0)) |
22 | 21 | eleq2d 2823 |
. . . . . . 7
⊢ (𝑥 = 0 → (∅ ∈
(𝐶‘𝑥) ↔ ∅ ∈ (𝐶‘0))) |
23 | | oveq2 7221 |
. . . . . . 7
⊢ (𝑥 = 0 → (2↑𝑥) = (2↑0)) |
24 | 22, 23 | ifbieq1d 4463 |
. . . . . 6
⊢ (𝑥 = 0 → if(∅ ∈
(𝐶‘𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘0), (2↑0), 0)) |
25 | 20, 24 | oveq12d 7231 |
. . . . 5
⊢ (𝑥 = 0 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = (0 + if(∅ ∈ (𝐶‘0), (2↑0),
0))) |
26 | 4 | ineq2d 4127 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅)) |
27 | | in0 4306 |
. . . . . . . . . 10
⊢ (𝐴 ∩ ∅) =
∅ |
28 | 26, 27 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅) |
29 | 28 | fveq2d 6721 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅)) |
30 | 29, 19 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0) |
31 | 4 | ineq2d 4127 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅)) |
32 | | in0 4306 |
. . . . . . . . . 10
⊢ (𝐵 ∩ ∅) =
∅ |
33 | 31, 32 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅) |
34 | 33 | fveq2d 6721 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅)) |
35 | 34, 19 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0) |
36 | 30, 35 | oveq12d 7231 |
. . . . . 6
⊢ (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0)) |
37 | | 00id 11007 |
. . . . . 6
⊢ (0 + 0) =
0 |
38 | 36, 37 | eqtrdi 2794 |
. . . . 5
⊢ (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0) |
39 | 25, 38 | eqeq12d 2753 |
. . . 4
⊢ (𝑥 = 0 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) =
0)) |
40 | 39 | imbi2d 344 |
. . 3
⊢ (𝑥 = 0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) =
0))) |
41 | | oveq2 7221 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘)) |
42 | 41 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑘))) |
43 | 42 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘)))) |
44 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝐶‘𝑥) = (𝐶‘𝑘)) |
45 | 44 | eleq2d 2823 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (∅ ∈ (𝐶‘𝑥) ↔ ∅ ∈ (𝐶‘𝑘))) |
46 | | oveq2 7221 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘)) |
47 | 45, 46 | ifbieq1d 4463 |
. . . . . 6
⊢ (𝑥 = 𝑘 → if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) |
48 | 43, 47 | oveq12d 7231 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0))) |
49 | 41 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘))) |
50 | 49 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘)))) |
51 | 41 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘))) |
52 | 51 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘)))) |
53 | 50, 52 | oveq12d 7231 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) |
54 | 48, 53 | eqeq12d 2753 |
. . . 4
⊢ (𝑥 = 𝑘 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) |
55 | 54 | imbi2d 344 |
. . 3
⊢ (𝑥 = 𝑘 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))) |
56 | | oveq2 7221 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1))) |
57 | 56 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) |
58 | 57 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1))))) |
59 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (𝐶‘𝑥) = (𝐶‘(𝑘 + 1))) |
60 | 59 | eleq2d 2823 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶‘𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1)))) |
61 | | oveq2 7221 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1))) |
62 | 60, 61 | ifbieq1d 4463 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) |
63 | 58, 62 | oveq12d 7231 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0))) |
64 | 56 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1)))) |
65 | 64 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1))))) |
66 | 56 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1)))) |
67 | 66 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))) |
68 | 65, 67 | oveq12d 7231 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))) |
69 | 63, 68 | eqeq12d 2753 |
. . . 4
⊢ (𝑥 = (𝑘 + 1) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))) |
70 | 69 | imbi2d 344 |
. . 3
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))) |
71 | | oveq2 7221 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁)) |
72 | 71 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁))) |
73 | 72 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) |
74 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝐶‘𝑥) = (𝐶‘𝑁)) |
75 | 74 | eleq2d 2823 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (∅ ∈ (𝐶‘𝑥) ↔ ∅ ∈ (𝐶‘𝑁))) |
76 | | oveq2 7221 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁)) |
77 | 75, 76 | ifbieq1d 4463 |
. . . . . 6
⊢ (𝑥 = 𝑁 → if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) |
78 | 73, 77 | oveq12d 7231 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0))) |
79 | 71 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁))) |
80 | 79 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁)))) |
81 | 71 | ineq2d 4127 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁))) |
82 | 81 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁)))) |
83 | 80, 82 | oveq12d 7231 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) |
84 | 78, 83 | eqeq12d 2753 |
. . . 4
⊢ (𝑥 = 𝑁 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) |
85 | 84 | imbi2d 344 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶‘𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))) |
86 | | sadval.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
87 | | sadval.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
88 | | sadval.c |
. . . . . . 7
⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
89 | 86, 87, 88 | sadc0 16013 |
. . . . . 6
⊢ (𝜑 → ¬ ∅ ∈
(𝐶‘0)) |
90 | 89 | iffalsed 4450 |
. . . . 5
⊢ (𝜑 → if(∅ ∈ (𝐶‘0), (2↑0), 0) =
0) |
91 | 90 | oveq2d 7229 |
. . . 4
⊢ (𝜑 → (0 + if(∅ ∈
(𝐶‘0), (2↑0),
0)) = (0 + 0)) |
92 | 91, 37 | eqtrdi 2794 |
. . 3
⊢ (𝜑 → (0 + if(∅ ∈
(𝐶‘0), (2↑0),
0)) = 0) |
93 | 86 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐴 ⊆
ℕ0) |
94 | 87 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐵 ⊆
ℕ0) |
95 | | simplr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝑘 ∈ ℕ0) |
96 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) |
97 | 93, 94, 88, 95, 9, 96 | sadadd2lem 16018 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))) |
98 | 97 | ex 416 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))) |
99 | 98 | expcom 417 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))) |
100 | 99 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶‘𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))) |
101 | 40, 55, 70, 85, 92, 100 | nn0ind 12272 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) |
102 | 1, 101 | mpcom 38 |
1
⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) |