MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2 Structured version   Visualization version   GIF version

Theorem sadadd2 16430
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadadd2 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 7395 . . . . . . . . . . 11 (𝑥 = 0 → (0..^𝑥) = (0..^0))
3 fzo0 13644 . . . . . . . . . . 11 (0..^0) = ∅
42, 3eqtrdi 2780 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = ∅)
54ineq2d 4183 . . . . . . . . 9 (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ ∅))
6 in0 4358 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ ∅) = ∅
75, 6eqtrdi 2780 . . . . . . . 8 (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ∅)
87fveq2d 6862 . . . . . . 7 (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘∅))
9 sadcadd.k . . . . . . . . 9 𝐾 = (bits ↾ ℕ0)
10 0nn0 12457 . . . . . . . . . . 11 0 ∈ ℕ0
11 fvres 6877 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
1210, 11ax-mp 5 . . . . . . . . . 10 ((bits ↾ ℕ0)‘0) = (bits‘0)
13 0bits 16409 . . . . . . . . . 10 (bits‘0) = ∅
1412, 13eqtr2i 2753 . . . . . . . . 9 ∅ = ((bits ↾ ℕ0)‘0)
159, 14fveq12i 6864 . . . . . . . 8 (𝐾‘∅) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0))
16 bitsf1o 16415 . . . . . . . . 9 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnvfv1 7251 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ 0 ∈ ℕ0) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0)
1816, 10, 17mp2an 692 . . . . . . . 8 ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0
1915, 18eqtri 2752 . . . . . . 7 (𝐾‘∅) = 0
208, 19eqtrdi 2780 . . . . . 6 (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = 0)
21 fveq2 6858 . . . . . . . 8 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
2221eleq2d 2814 . . . . . . 7 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
23 oveq2 7395 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = (2↑0))
2422, 23ifbieq1d 4513 . . . . . 6 (𝑥 = 0 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘0), (2↑0), 0))
2520, 24oveq12d 7405 . . . . 5 (𝑥 = 0 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)))
264ineq2d 4183 . . . . . . . . . 10 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅))
27 in0 4358 . . . . . . . . . 10 (𝐴 ∩ ∅) = ∅
2826, 27eqtrdi 2780 . . . . . . . . 9 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅)
2928fveq2d 6862 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅))
3029, 19eqtrdi 2780 . . . . . . 7 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0)
314ineq2d 4183 . . . . . . . . . 10 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅))
32 in0 4358 . . . . . . . . . 10 (𝐵 ∩ ∅) = ∅
3331, 32eqtrdi 2780 . . . . . . . . 9 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅)
3433fveq2d 6862 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅))
3534, 19eqtrdi 2780 . . . . . . 7 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0)
3630, 35oveq12d 7405 . . . . . 6 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0))
37 00id 11349 . . . . . 6 (0 + 0) = 0
3836, 37eqtrdi 2780 . . . . 5 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0)
3925, 38eqeq12d 2745 . . . 4 (𝑥 = 0 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0))
4039imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0)))
41 oveq2 7395 . . . . . . . 8 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
4241ineq2d 4183 . . . . . . 7 (𝑥 = 𝑘 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑘)))
4342fveq2d 6862 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))))
44 fveq2 6858 . . . . . . . 8 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
4544eleq2d 2814 . . . . . . 7 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
46 oveq2 7395 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
4745, 46ifbieq1d 4513 . . . . . 6 (𝑥 = 𝑘 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0))
4843, 47oveq12d 7405 . . . . 5 (𝑥 = 𝑘 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)))
4941ineq2d 4183 . . . . . . 7 (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘)))
5049fveq2d 6862 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘))))
5141ineq2d 4183 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘)))
5251fveq2d 6862 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘))))
5350, 52oveq12d 7405 . . . . 5 (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
5448, 53eqeq12d 2745 . . . 4 (𝑥 = 𝑘 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
5554imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))))
56 oveq2 7395 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
5756ineq2d 4183 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1))))
5857fveq2d 6862 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))))
59 fveq2 6858 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
6059eleq2d 2814 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
61 oveq2 7395 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
6260, 61ifbieq1d 4513 . . . . . 6 (𝑥 = (𝑘 + 1) → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0))
6358, 62oveq12d 7405 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)))
6456ineq2d 4183 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1))))
6564fveq2d 6862 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))))
6656ineq2d 4183 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1))))
6766fveq2d 6862 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))
6865, 67oveq12d 7405 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
6963, 68eqeq12d 2745 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
7069imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
71 oveq2 7395 . . . . . . . 8 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
7271ineq2d 4183 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7372fveq2d 6862 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
74 fveq2 6858 . . . . . . . 8 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
7574eleq2d 2814 . . . . . . 7 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
76 oveq2 7395 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
7775, 76ifbieq1d 4513 . . . . . 6 (𝑥 = 𝑁 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
7873, 77oveq12d 7405 . . . . 5 (𝑥 = 𝑁 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
7971ineq2d 4183 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁)))
8079fveq2d 6862 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁))))
8171ineq2d 4183 . . . . . . 7 (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁)))
8281fveq2d 6862 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁))))
8380, 82oveq12d 7405 . . . . 5 (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
8478, 83eqeq12d 2745 . . . 4 (𝑥 = 𝑁 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
8584imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
86 sadval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
87 sadval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
88 sadval.c . . . . . . 7 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8986, 87, 88sadc0 16424 . . . . . 6 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
9089iffalsed 4499 . . . . 5 (𝜑 → if(∅ ∈ (𝐶‘0), (2↑0), 0) = 0)
9190oveq2d 7403 . . . 4 (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = (0 + 0))
9291, 37eqtrdi 2780 . . 3 (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0)
9386ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐴 ⊆ ℕ0)
9487ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐵 ⊆ ℕ0)
95 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝑘 ∈ ℕ0)
96 simpr 484 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
9793, 94, 88, 95, 9, 96sadadd2lem 16429 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
9897ex 412 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
9998expcom 413 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
10099a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
10140, 55, 70, 85, 92, 100nn0ind 12629 . 2 (𝑁 ∈ ℕ0 → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
1021, 101mpcom 38 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  caddwcad 1606  wcel 2109  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  cmpt 5188  ccnv 5637  cres 5640  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  2c2 12241  0cn0 12442  ..^cfzo 13615  seqcseq 13966  cexp 14026  bitscbits 16389   sadd csad 16390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-bits 16392  df-sad 16421
This theorem is referenced by:  sadadd3  16431
  Copyright terms: Public domain W3C validator