MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcadd Structured version   Visualization version   GIF version

Theorem sadcadd 16496
Description: Non-recursive definition of the carry sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadcadd (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcadd
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fveq2 6905 . . . . . 6 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
32eleq2d 2826 . . . . 5 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
4 oveq2 7440 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = (2↑0))
5 2cn 12342 . . . . . . . 8 2 ∈ ℂ
6 exp0 14107 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
75, 6ax-mp 5 . . . . . . 7 (2↑0) = 1
84, 7eqtrdi 2792 . . . . . 6 (𝑥 = 0 → (2↑𝑥) = 1)
9 oveq2 7440 . . . . . . . . . . . . 13 (𝑥 = 0 → (0..^𝑥) = (0..^0))
10 fzo0 13724 . . . . . . . . . . . . 13 (0..^0) = ∅
119, 10eqtrdi 2792 . . . . . . . . . . . 12 (𝑥 = 0 → (0..^𝑥) = ∅)
1211ineq2d 4219 . . . . . . . . . . 11 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅))
13 in0 4394 . . . . . . . . . . 11 (𝐴 ∩ ∅) = ∅
1412, 13eqtrdi 2792 . . . . . . . . . 10 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅)
1514fveq2d 6909 . . . . . . . . 9 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅))
16 sadcadd.k . . . . . . . . . . 11 𝐾 = (bits ↾ ℕ0)
17 0nn0 12543 . . . . . . . . . . . . 13 0 ∈ ℕ0
18 fvres 6924 . . . . . . . . . . . . 13 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
1917, 18ax-mp 5 . . . . . . . . . . . 12 ((bits ↾ ℕ0)‘0) = (bits‘0)
20 0bits 16477 . . . . . . . . . . . 12 (bits‘0) = ∅
2119, 20eqtr2i 2765 . . . . . . . . . . 11 ∅ = ((bits ↾ ℕ0)‘0)
2216, 21fveq12i 6911 . . . . . . . . . 10 (𝐾‘∅) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0))
23 bitsf1o 16483 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
24 f1ocnvfv1 7297 . . . . . . . . . . 11 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ 0 ∈ ℕ0) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0)
2523, 17, 24mp2an 692 . . . . . . . . . 10 ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0
2622, 25eqtri 2764 . . . . . . . . 9 (𝐾‘∅) = 0
2715, 26eqtrdi 2792 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0)
2811ineq2d 4219 . . . . . . . . . . 11 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅))
29 in0 4394 . . . . . . . . . . 11 (𝐵 ∩ ∅) = ∅
3028, 29eqtrdi 2792 . . . . . . . . . 10 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅)
3130fveq2d 6909 . . . . . . . . 9 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅))
3231, 26eqtrdi 2792 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0)
3327, 32oveq12d 7450 . . . . . . 7 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0))
34 00id 11437 . . . . . . 7 (0 + 0) = 0
3533, 34eqtrdi 2792 . . . . . 6 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0)
368, 35breq12d 5155 . . . . 5 (𝑥 = 0 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ 1 ≤ 0))
373, 36bibi12d 345 . . . 4 (𝑥 = 0 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0)))
3837imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0))))
39 fveq2 6905 . . . . . 6 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
4039eleq2d 2826 . . . . 5 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
41 oveq2 7440 . . . . . 6 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
42 oveq2 7440 . . . . . . . . 9 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
4342ineq2d 4219 . . . . . . . 8 (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘)))
4443fveq2d 6909 . . . . . . 7 (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘))))
4542ineq2d 4219 . . . . . . . 8 (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘)))
4645fveq2d 6909 . . . . . . 7 (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘))))
4744, 46oveq12d 7450 . . . . . 6 (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
4841, 47breq12d 5155 . . . . 5 (𝑥 = 𝑘 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
4940, 48bibi12d 345 . . . 4 (𝑥 = 𝑘 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))))
5049imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))))
51 fveq2 6905 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
5251eleq2d 2826 . . . . 5 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
53 oveq2 7440 . . . . . 6 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
54 oveq2 7440 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
5554ineq2d 4219 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1))))
5655fveq2d 6909 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))))
5754ineq2d 4219 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1))))
5857fveq2d 6909 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))
5956, 58oveq12d 7450 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
6053, 59breq12d 5155 . . . . 5 (𝑥 = (𝑘 + 1) → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
6152, 60bibi12d 345 . . . 4 (𝑥 = (𝑘 + 1) → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
6261imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
63 fveq2 6905 . . . . . 6 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
6463eleq2d 2826 . . . . 5 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
65 oveq2 7440 . . . . . 6 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
66 oveq2 7440 . . . . . . . . 9 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
6766ineq2d 4219 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁)))
6867fveq2d 6909 . . . . . . 7 (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁))))
6966ineq2d 4219 . . . . . . . 8 (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁)))
7069fveq2d 6909 . . . . . . 7 (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁))))
7168, 70oveq12d 7450 . . . . . 6 (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
7265, 71breq12d 5155 . . . . 5 (𝑥 = 𝑁 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
7364, 72bibi12d 345 . . . 4 (𝑥 = 𝑁 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
7473imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))))
75 sadval.a . . . . 5 (𝜑𝐴 ⊆ ℕ0)
76 sadval.b . . . . 5 (𝜑𝐵 ⊆ ℕ0)
77 sadval.c . . . . 5 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
7875, 76, 77sadc0 16492 . . . 4 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
79 0lt1 11786 . . . . . 6 0 < 1
80 0re 11264 . . . . . . 7 0 ∈ ℝ
81 1re 11262 . . . . . . 7 1 ∈ ℝ
8280, 81ltnlei 11383 . . . . . 6 (0 < 1 ↔ ¬ 1 ≤ 0)
8379, 82mpbi 230 . . . . 5 ¬ 1 ≤ 0
8483a1i 11 . . . 4 (𝜑 → ¬ 1 ≤ 0)
8578, 842falsed 376 . . 3 (𝜑 → (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0))
8675ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝐴 ⊆ ℕ0)
8776ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝐵 ⊆ ℕ0)
88 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝑘 ∈ ℕ0)
89 simpr 484 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
9086, 87, 77, 88, 16, 89sadcaddlem 16495 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
9190ex 412 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
9291expcom 413 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
9392a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (𝜑 → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
9438, 50, 62, 74, 85, 93nn0ind 12715 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
951, 94mpcom 38 1 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  caddwcad 1605  wcel 2107  cin 3949  wss 3950  c0 4332  ifcif 4524  𝒫 cpw 4599   class class class wbr 5142  cmpt 5224  ccnv 5683  cres 5686  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  cmpo 7434  1oc1o 8500  2oc2o 8501  Fincfn 8986  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  2c2 12322  0cn0 12528  ..^cfzo 13695  seqcseq 14043  cexp 14103  bitscbits 16457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1511  df-tru 1542  df-fal 1552  df-cad 1606  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-dvds 16292  df-bits 16460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator