MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcadd Structured version   Visualization version   GIF version

Theorem sadcadd 16428
Description: Non-recursive definition of the carry sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadcadd (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcadd
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fveq2 6858 . . . . . 6 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
32eleq2d 2814 . . . . 5 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
4 oveq2 7395 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = (2↑0))
5 2cn 12261 . . . . . . . 8 2 ∈ ℂ
6 exp0 14030 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
75, 6ax-mp 5 . . . . . . 7 (2↑0) = 1
84, 7eqtrdi 2780 . . . . . 6 (𝑥 = 0 → (2↑𝑥) = 1)
9 oveq2 7395 . . . . . . . . . . . . 13 (𝑥 = 0 → (0..^𝑥) = (0..^0))
10 fzo0 13644 . . . . . . . . . . . . 13 (0..^0) = ∅
119, 10eqtrdi 2780 . . . . . . . . . . . 12 (𝑥 = 0 → (0..^𝑥) = ∅)
1211ineq2d 4183 . . . . . . . . . . 11 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅))
13 in0 4358 . . . . . . . . . . 11 (𝐴 ∩ ∅) = ∅
1412, 13eqtrdi 2780 . . . . . . . . . 10 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅)
1514fveq2d 6862 . . . . . . . . 9 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅))
16 sadcadd.k . . . . . . . . . . 11 𝐾 = (bits ↾ ℕ0)
17 0nn0 12457 . . . . . . . . . . . . 13 0 ∈ ℕ0
18 fvres 6877 . . . . . . . . . . . . 13 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
1917, 18ax-mp 5 . . . . . . . . . . . 12 ((bits ↾ ℕ0)‘0) = (bits‘0)
20 0bits 16409 . . . . . . . . . . . 12 (bits‘0) = ∅
2119, 20eqtr2i 2753 . . . . . . . . . . 11 ∅ = ((bits ↾ ℕ0)‘0)
2216, 21fveq12i 6864 . . . . . . . . . 10 (𝐾‘∅) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0))
23 bitsf1o 16415 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
24 f1ocnvfv1 7251 . . . . . . . . . . 11 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ 0 ∈ ℕ0) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0)
2523, 17, 24mp2an 692 . . . . . . . . . 10 ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0
2622, 25eqtri 2752 . . . . . . . . 9 (𝐾‘∅) = 0
2715, 26eqtrdi 2780 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0)
2811ineq2d 4183 . . . . . . . . . . 11 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅))
29 in0 4358 . . . . . . . . . . 11 (𝐵 ∩ ∅) = ∅
3028, 29eqtrdi 2780 . . . . . . . . . 10 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅)
3130fveq2d 6862 . . . . . . . . 9 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅))
3231, 26eqtrdi 2780 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0)
3327, 32oveq12d 7405 . . . . . . 7 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0))
34 00id 11349 . . . . . . 7 (0 + 0) = 0
3533, 34eqtrdi 2780 . . . . . 6 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0)
368, 35breq12d 5120 . . . . 5 (𝑥 = 0 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ 1 ≤ 0))
373, 36bibi12d 345 . . . 4 (𝑥 = 0 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0)))
3837imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0))))
39 fveq2 6858 . . . . . 6 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
4039eleq2d 2814 . . . . 5 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
41 oveq2 7395 . . . . . 6 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
42 oveq2 7395 . . . . . . . . 9 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
4342ineq2d 4183 . . . . . . . 8 (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘)))
4443fveq2d 6862 . . . . . . 7 (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘))))
4542ineq2d 4183 . . . . . . . 8 (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘)))
4645fveq2d 6862 . . . . . . 7 (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘))))
4744, 46oveq12d 7405 . . . . . 6 (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
4841, 47breq12d 5120 . . . . 5 (𝑥 = 𝑘 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
4940, 48bibi12d 345 . . . 4 (𝑥 = 𝑘 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))))
5049imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))))
51 fveq2 6858 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
5251eleq2d 2814 . . . . 5 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
53 oveq2 7395 . . . . . 6 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
54 oveq2 7395 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
5554ineq2d 4183 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1))))
5655fveq2d 6862 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))))
5754ineq2d 4183 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1))))
5857fveq2d 6862 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))
5956, 58oveq12d 7405 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
6053, 59breq12d 5120 . . . . 5 (𝑥 = (𝑘 + 1) → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
6152, 60bibi12d 345 . . . 4 (𝑥 = (𝑘 + 1) → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
6261imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
63 fveq2 6858 . . . . . 6 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
6463eleq2d 2814 . . . . 5 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
65 oveq2 7395 . . . . . 6 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
66 oveq2 7395 . . . . . . . . 9 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
6766ineq2d 4183 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁)))
6867fveq2d 6862 . . . . . . 7 (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁))))
6966ineq2d 4183 . . . . . . . 8 (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁)))
7069fveq2d 6862 . . . . . . 7 (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁))))
7168, 70oveq12d 7405 . . . . . 6 (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
7265, 71breq12d 5120 . . . . 5 (𝑥 = 𝑁 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
7364, 72bibi12d 345 . . . 4 (𝑥 = 𝑁 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
7473imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))))
75 sadval.a . . . . 5 (𝜑𝐴 ⊆ ℕ0)
76 sadval.b . . . . 5 (𝜑𝐵 ⊆ ℕ0)
77 sadval.c . . . . 5 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
7875, 76, 77sadc0 16424 . . . 4 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
79 0lt1 11700 . . . . . 6 0 < 1
80 0re 11176 . . . . . . 7 0 ∈ ℝ
81 1re 11174 . . . . . . 7 1 ∈ ℝ
8280, 81ltnlei 11295 . . . . . 6 (0 < 1 ↔ ¬ 1 ≤ 0)
8379, 82mpbi 230 . . . . 5 ¬ 1 ≤ 0
8483a1i 11 . . . 4 (𝜑 → ¬ 1 ≤ 0)
8578, 842falsed 376 . . 3 (𝜑 → (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0))
8675ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝐴 ⊆ ℕ0)
8776ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝐵 ⊆ ℕ0)
88 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝑘 ∈ ℕ0)
89 simpr 484 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
9086, 87, 77, 88, 16, 89sadcaddlem 16427 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
9190ex 412 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
9291expcom 413 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
9392a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (𝜑 → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
9438, 50, 62, 74, 85, 93nn0ind 12629 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
951, 94mpcom 38 1 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  caddwcad 1606  wcel 2109  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  ccnv 5637  cres 5640  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  2c2 12241  0cn0 12442  ..^cfzo 13615  seqcseq 13966  cexp 14026  bitscbits 16389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-bits 16392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator