MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcadd Structured version   Visualization version   GIF version

Theorem sadcadd 16369
Description: Non-recursive definition of the carry sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadcadd (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcadd
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fveq2 6822 . . . . . 6 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
32eleq2d 2817 . . . . 5 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
4 oveq2 7354 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = (2↑0))
5 2cn 12200 . . . . . . . 8 2 ∈ ℂ
6 exp0 13972 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
75, 6ax-mp 5 . . . . . . 7 (2↑0) = 1
84, 7eqtrdi 2782 . . . . . 6 (𝑥 = 0 → (2↑𝑥) = 1)
9 oveq2 7354 . . . . . . . . . . . . 13 (𝑥 = 0 → (0..^𝑥) = (0..^0))
10 fzo0 13583 . . . . . . . . . . . . 13 (0..^0) = ∅
119, 10eqtrdi 2782 . . . . . . . . . . . 12 (𝑥 = 0 → (0..^𝑥) = ∅)
1211ineq2d 4170 . . . . . . . . . . 11 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅))
13 in0 4345 . . . . . . . . . . 11 (𝐴 ∩ ∅) = ∅
1412, 13eqtrdi 2782 . . . . . . . . . 10 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅)
1514fveq2d 6826 . . . . . . . . 9 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅))
16 sadcadd.k . . . . . . . . . . 11 𝐾 = (bits ↾ ℕ0)
17 0nn0 12396 . . . . . . . . . . . . 13 0 ∈ ℕ0
18 fvres 6841 . . . . . . . . . . . . 13 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
1917, 18ax-mp 5 . . . . . . . . . . . 12 ((bits ↾ ℕ0)‘0) = (bits‘0)
20 0bits 16350 . . . . . . . . . . . 12 (bits‘0) = ∅
2119, 20eqtr2i 2755 . . . . . . . . . . 11 ∅ = ((bits ↾ ℕ0)‘0)
2216, 21fveq12i 6828 . . . . . . . . . 10 (𝐾‘∅) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0))
23 bitsf1o 16356 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
24 f1ocnvfv1 7210 . . . . . . . . . . 11 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ 0 ∈ ℕ0) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0)
2523, 17, 24mp2an 692 . . . . . . . . . 10 ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0
2622, 25eqtri 2754 . . . . . . . . 9 (𝐾‘∅) = 0
2715, 26eqtrdi 2782 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0)
2811ineq2d 4170 . . . . . . . . . . 11 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅))
29 in0 4345 . . . . . . . . . . 11 (𝐵 ∩ ∅) = ∅
3028, 29eqtrdi 2782 . . . . . . . . . 10 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅)
3130fveq2d 6826 . . . . . . . . 9 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅))
3231, 26eqtrdi 2782 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0)
3327, 32oveq12d 7364 . . . . . . 7 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0))
34 00id 11288 . . . . . . 7 (0 + 0) = 0
3533, 34eqtrdi 2782 . . . . . 6 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0)
368, 35breq12d 5104 . . . . 5 (𝑥 = 0 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ 1 ≤ 0))
373, 36bibi12d 345 . . . 4 (𝑥 = 0 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0)))
3837imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0))))
39 fveq2 6822 . . . . . 6 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
4039eleq2d 2817 . . . . 5 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
41 oveq2 7354 . . . . . 6 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
42 oveq2 7354 . . . . . . . . 9 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
4342ineq2d 4170 . . . . . . . 8 (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘)))
4443fveq2d 6826 . . . . . . 7 (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘))))
4542ineq2d 4170 . . . . . . . 8 (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘)))
4645fveq2d 6826 . . . . . . 7 (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘))))
4744, 46oveq12d 7364 . . . . . 6 (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
4841, 47breq12d 5104 . . . . 5 (𝑥 = 𝑘 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
4940, 48bibi12d 345 . . . 4 (𝑥 = 𝑘 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))))
5049imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))))
51 fveq2 6822 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
5251eleq2d 2817 . . . . 5 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
53 oveq2 7354 . . . . . 6 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
54 oveq2 7354 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
5554ineq2d 4170 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1))))
5655fveq2d 6826 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))))
5754ineq2d 4170 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1))))
5857fveq2d 6826 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))
5956, 58oveq12d 7364 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
6053, 59breq12d 5104 . . . . 5 (𝑥 = (𝑘 + 1) → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
6152, 60bibi12d 345 . . . 4 (𝑥 = (𝑘 + 1) → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
6261imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
63 fveq2 6822 . . . . . 6 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
6463eleq2d 2817 . . . . 5 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
65 oveq2 7354 . . . . . 6 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
66 oveq2 7354 . . . . . . . . 9 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
6766ineq2d 4170 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁)))
6867fveq2d 6826 . . . . . . 7 (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁))))
6966ineq2d 4170 . . . . . . . 8 (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁)))
7069fveq2d 6826 . . . . . . 7 (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁))))
7168, 70oveq12d 7364 . . . . . 6 (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
7265, 71breq12d 5104 . . . . 5 (𝑥 = 𝑁 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
7364, 72bibi12d 345 . . . 4 (𝑥 = 𝑁 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
7473imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))))
75 sadval.a . . . . 5 (𝜑𝐴 ⊆ ℕ0)
76 sadval.b . . . . 5 (𝜑𝐵 ⊆ ℕ0)
77 sadval.c . . . . 5 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
7875, 76, 77sadc0 16365 . . . 4 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
79 0lt1 11639 . . . . . 6 0 < 1
80 0re 11114 . . . . . . 7 0 ∈ ℝ
81 1re 11112 . . . . . . 7 1 ∈ ℝ
8280, 81ltnlei 11234 . . . . . 6 (0 < 1 ↔ ¬ 1 ≤ 0)
8379, 82mpbi 230 . . . . 5 ¬ 1 ≤ 0
8483a1i 11 . . . 4 (𝜑 → ¬ 1 ≤ 0)
8578, 842falsed 376 . . 3 (𝜑 → (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0))
8675ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝐴 ⊆ ℕ0)
8776ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝐵 ⊆ ℕ0)
88 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝑘 ∈ ℕ0)
89 simpr 484 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
9086, 87, 77, 88, 16, 89sadcaddlem 16368 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
9190ex 412 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
9291expcom 413 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
9392a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (𝜑 → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
9438, 50, 62, 74, 85, 93nn0ind 12568 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
951, 94mpcom 38 1 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  caddwcad 1607  wcel 2111  cin 3901  wss 3902  c0 4283  ifcif 4475  𝒫 cpw 4550   class class class wbr 5091  cmpt 5172  ccnv 5615  cres 5618  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  2c2 12180  0cn0 12381  ..^cfzo 13554  seqcseq 13908  cexp 13968  bitscbits 16330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-bits 16333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator