Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveqprc | Structured version Visualization version GIF version |
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 20605. (Contributed by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
fveqprc.e | ⊢ (𝐸‘∅) = ∅ |
fveqprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
Ref | Expression |
---|---|
fveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
2 | 1 | eqcomi 2748 | . 2 ⊢ ∅ = (𝐸‘∅) |
3 | fvprc 6745 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
4 | fveqprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
5 | fvprc 6745 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
6 | 4, 5 | eqtrid 2791 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
7 | 6 | fveq2d 6757 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑌) = (𝐸‘∅)) |
8 | 2, 3, 7 | 3eqtr4a 2806 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∅c0 4254 ‘cfv 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 |
This theorem is referenced by: oppcbas 17320 zlmlem 20605 ttglem 27116 mendsca 40902 |
Copyright terms: Public domain | W3C validator |