MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqprc Structured version   Visualization version   GIF version

Theorem fveqprc 16962
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 20790. (Contributed by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
fveqprc.e (𝐸‘∅) = ∅
fveqprc.y 𝑌 = (𝐹𝑋)
Assertion
Ref Expression
fveqprc 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))

Proof of Theorem fveqprc
StepHypRef Expression
1 fveqprc.e . . 3 (𝐸‘∅) = ∅
21eqcomi 2746 . 2 ∅ = (𝐸‘∅)
3 fvprc 6803 . 2 𝑋 ∈ V → (𝐸𝑋) = ∅)
4 fveqprc.y . . . 4 𝑌 = (𝐹𝑋)
5 fvprc 6803 . . . 4 𝑋 ∈ V → (𝐹𝑋) = ∅)
64, 5eqtrid 2789 . . 3 𝑋 ∈ V → 𝑌 = ∅)
76fveq2d 6815 . 2 𝑋 ∈ V → (𝐸𝑌) = (𝐸‘∅))
82, 3, 73eqtr4a 2803 1 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  c0 4267  cfv 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-iota 6417  df-fv 6473
This theorem is referenced by:  oppcbas  17498  zlmlem  20790  ttglem  27347  mendsca  41218
  Copyright terms: Public domain W3C validator