MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqprc Structured version   Visualization version   GIF version

Theorem fveqprc 16892
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 20718. (Contributed by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
fveqprc.e (𝐸‘∅) = ∅
fveqprc.y 𝑌 = (𝐹𝑋)
Assertion
Ref Expression
fveqprc 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))

Proof of Theorem fveqprc
StepHypRef Expression
1 fveqprc.e . . 3 (𝐸‘∅) = ∅
21eqcomi 2747 . 2 ∅ = (𝐸‘∅)
3 fvprc 6766 . 2 𝑋 ∈ V → (𝐸𝑋) = ∅)
4 fveqprc.y . . . 4 𝑌 = (𝐹𝑋)
5 fvprc 6766 . . . 4 𝑋 ∈ V → (𝐹𝑋) = ∅)
64, 5eqtrid 2790 . . 3 𝑋 ∈ V → 𝑌 = ∅)
76fveq2d 6778 . 2 𝑋 ∈ V → (𝐸𝑌) = (𝐸‘∅))
82, 3, 73eqtr4a 2804 1 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by:  oppcbas  17428  zlmlem  20718  ttglem  27238  mendsca  41014
  Copyright terms: Public domain W3C validator