| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqprc | Structured version Visualization version GIF version | ||
| Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 21453. (Contributed by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| fveqprc.e | ⊢ (𝐸‘∅) = ∅ |
| fveqprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| fveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
| 2 | 1 | eqcomi 2740 | . 2 ⊢ ∅ = (𝐸‘∅) |
| 3 | fvprc 6814 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
| 4 | fveqprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
| 5 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 6 | 4, 5 | eqtrid 2778 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
| 7 | 6 | fveq2d 6826 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑌) = (𝐸‘∅)) |
| 8 | 2, 3, 7 | 3eqtr4a 2792 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: oppcbas 17624 zlmlem 21453 ttglem 28854 mendsca 43226 |
| Copyright terms: Public domain | W3C validator |