MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqprc Structured version   Visualization version   GIF version

Theorem fveqprc 17215
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 21482. (Contributed by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
fveqprc.e (𝐸‘∅) = ∅
fveqprc.y 𝑌 = (𝐹𝑋)
Assertion
Ref Expression
fveqprc 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))

Proof of Theorem fveqprc
StepHypRef Expression
1 fveqprc.e . . 3 (𝐸‘∅) = ∅
21eqcomi 2745 . 2 ∅ = (𝐸‘∅)
3 fvprc 6873 . 2 𝑋 ∈ V → (𝐸𝑋) = ∅)
4 fveqprc.y . . . 4 𝑌 = (𝐹𝑋)
5 fvprc 6873 . . . 4 𝑋 ∈ V → (𝐹𝑋) = ∅)
64, 5eqtrid 2783 . . 3 𝑋 ∈ V → 𝑌 = ∅)
76fveq2d 6885 . 2 𝑋 ∈ V → (𝐸𝑌) = (𝐸‘∅))
82, 3, 73eqtr4a 2797 1 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544
This theorem is referenced by:  oppcbas  17735  zlmlem  21482  ttglem  28860  mendsca  43176
  Copyright terms: Public domain W3C validator