MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqprc Structured version   Visualization version   GIF version

Theorem fveqprc 16795
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 20605. (Contributed by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
fveqprc.e (𝐸‘∅) = ∅
fveqprc.y 𝑌 = (𝐹𝑋)
Assertion
Ref Expression
fveqprc 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))

Proof of Theorem fveqprc
StepHypRef Expression
1 fveqprc.e . . 3 (𝐸‘∅) = ∅
21eqcomi 2748 . 2 ∅ = (𝐸‘∅)
3 fvprc 6745 . 2 𝑋 ∈ V → (𝐸𝑋) = ∅)
4 fveqprc.y . . . 4 𝑌 = (𝐹𝑋)
5 fvprc 6745 . . . 4 𝑋 ∈ V → (𝐹𝑋) = ∅)
64, 5eqtrid 2791 . . 3 𝑋 ∈ V → 𝑌 = ∅)
76fveq2d 6757 . 2 𝑋 ∈ V → (𝐸𝑌) = (𝐸‘∅))
82, 3, 73eqtr4a 2806 1 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2112  Vcvv 3423  c0 4254  cfv 6415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6373  df-fv 6423
This theorem is referenced by:  oppcbas  17320  zlmlem  20605  ttglem  27116  mendsca  40902
  Copyright terms: Public domain W3C validator