MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqprc Structured version   Visualization version   GIF version

Theorem fveqprc 17161
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 21426. (Contributed by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
fveqprc.e (𝐸‘∅) = ∅
fveqprc.y 𝑌 = (𝐹𝑋)
Assertion
Ref Expression
fveqprc 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))

Proof of Theorem fveqprc
StepHypRef Expression
1 fveqprc.e . . 3 (𝐸‘∅) = ∅
21eqcomi 2738 . 2 ∅ = (𝐸‘∅)
3 fvprc 6850 . 2 𝑋 ∈ V → (𝐸𝑋) = ∅)
4 fveqprc.y . . . 4 𝑌 = (𝐹𝑋)
5 fvprc 6850 . . . 4 𝑋 ∈ V → (𝐹𝑋) = ∅)
64, 5eqtrid 2776 . . 3 𝑋 ∈ V → 𝑌 = ∅)
76fveq2d 6862 . 2 𝑋 ∈ V → (𝐸𝑌) = (𝐸‘∅))
82, 3, 73eqtr4a 2790 1 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519
This theorem is referenced by:  oppcbas  17679  zlmlem  21426  ttglem  28803  mendsca  43174
  Copyright terms: Public domain W3C validator