Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveqprc | Structured version Visualization version GIF version |
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 20790. (Contributed by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
fveqprc.e | ⊢ (𝐸‘∅) = ∅ |
fveqprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
Ref | Expression |
---|---|
fveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
2 | 1 | eqcomi 2746 | . 2 ⊢ ∅ = (𝐸‘∅) |
3 | fvprc 6803 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
4 | fveqprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
5 | fvprc 6803 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
6 | 4, 5 | eqtrid 2789 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
7 | 6 | fveq2d 6815 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑌) = (𝐸‘∅)) |
8 | 2, 3, 7 | 3eqtr4a 2803 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4267 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6417 df-fv 6473 |
This theorem is referenced by: oppcbas 17498 zlmlem 20790 ttglem 27347 mendsca 41218 |
Copyright terms: Public domain | W3C validator |