| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqprc | Structured version Visualization version GIF version | ||
| Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 21482. (Contributed by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| fveqprc.e | ⊢ (𝐸‘∅) = ∅ |
| fveqprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| fveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
| 2 | 1 | eqcomi 2745 | . 2 ⊢ ∅ = (𝐸‘∅) |
| 3 | fvprc 6873 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
| 4 | fveqprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
| 5 | fvprc 6873 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 6 | 4, 5 | eqtrid 2783 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
| 7 | 6 | fveq2d 6885 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑌) = (𝐸‘∅)) |
| 8 | 2, 3, 7 | 3eqtr4a 2797 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: oppcbas 17735 zlmlem 21482 ttglem 28860 mendsca 43176 |
| Copyright terms: Public domain | W3C validator |