![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fveqprc | Structured version Visualization version GIF version |
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 21506. (Contributed by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
fveqprc.e | ⊢ (𝐸‘∅) = ∅ |
fveqprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
Ref | Expression |
---|---|
fveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
2 | 1 | eqcomi 2735 | . 2 ⊢ ∅ = (𝐸‘∅) |
3 | fvprc 6893 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
4 | fveqprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
5 | fvprc 6893 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
6 | 4, 5 | eqtrid 2778 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
7 | 6 | fveq2d 6905 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑌) = (𝐸‘∅)) |
8 | 2, 3, 7 | 3eqtr4a 2792 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∅c0 4325 ‘cfv 6554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-iota 6506 df-fv 6562 |
This theorem is referenced by: oppcbas 17732 zlmlem 21506 ttglem 28804 mendsca 42850 |
Copyright terms: Public domain | W3C validator |