Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendsca Structured version   Visualization version   GIF version

Theorem mendsca 42491
Description: The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
mendsca.a 𝐴 = (MEndoβ€˜π‘€)
mendsca.s 𝑆 = (Scalarβ€˜π‘€)
Assertion
Ref Expression
mendsca 𝑆 = (Scalarβ€˜π΄)

Proof of Theorem mendsca
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6897 . . . . 5 (Scalarβ€˜π‘€) ∈ V
2 eqid 2726 . . . . . 6 ({⟨(Baseβ€˜ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩}) = ({⟨(Baseβ€˜ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})
32algsca 42483 . . . . 5 ((Scalarβ€˜π‘€) ∈ V β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜({⟨(Baseβ€˜ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
41, 3mp1i 13 . . . 4 (𝑀 ∈ V β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜({⟨(Baseβ€˜ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
5 eqid 2726 . . . . . 6 (𝑀 LMHom 𝑀) = (𝑀 LMHom 𝑀)
6 eqid 2726 . . . . . 6 (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦)) = (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))
7 eqid 2726 . . . . . 6 (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘ 𝑦)) = (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘ 𝑦))
8 eqid 2726 . . . . . 6 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
9 eqid 2726 . . . . . 6 (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))
105, 6, 7, 8, 9mendval 42485 . . . . 5 (𝑀 ∈ V β†’ (MEndoβ€˜π‘€) = ({⟨(Baseβ€˜ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩}))
1110fveq2d 6888 . . . 4 (𝑀 ∈ V β†’ (Scalarβ€˜(MEndoβ€˜π‘€)) = (Scalarβ€˜({⟨(Baseβ€˜ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
124, 11eqtr4d 2769 . . 3 (𝑀 ∈ V β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜(MEndoβ€˜π‘€)))
13 scaid 17266 . . . . . 6 Scalar = Slot (Scalarβ€˜ndx)
1413str0 17128 . . . . 5 βˆ… = (Scalarβ€˜βˆ…)
1514eqcomi 2735 . . . 4 (Scalarβ€˜βˆ…) = βˆ…
16 eqid 2726 . . . 4 (MEndoβ€˜π‘€) = (MEndoβ€˜π‘€)
1715, 16fveqprc 17130 . . 3 (Β¬ 𝑀 ∈ V β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜(MEndoβ€˜π‘€)))
1812, 17pm2.61i 182 . 2 (Scalarβ€˜π‘€) = (Scalarβ€˜(MEndoβ€˜π‘€))
19 mendsca.s . 2 𝑆 = (Scalarβ€˜π‘€)
20 mendsca.a . . 3 𝐴 = (MEndoβ€˜π‘€)
2120fveq2i 6887 . 2 (Scalarβ€˜π΄) = (Scalarβ€˜(MEndoβ€˜π‘€))
2218, 19, 213eqtr4i 2764 1 𝑆 = (Scalarβ€˜π΄)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098  Vcvv 3468   βˆͺ cun 3941  βˆ…c0 4317  {csn 4623  {cpr 4625  {ctp 4627  βŸ¨cop 4629   Γ— cxp 5667   ∘ ccom 5673  β€˜cfv 6536  (class class class)co 7404   ∈ cmpo 7406   ∘f cof 7664  ndxcnx 17132  Basecbs 17150  +gcplusg 17203  .rcmulr 17204  Scalarcsca 17206   ·𝑠 cvsca 17207   LMHom clmhm 20864  MEndocmend 42477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-struct 17086  df-slot 17121  df-ndx 17133  df-base 17151  df-plusg 17216  df-mulr 17217  df-sca 17219  df-vsca 17220  df-mend 42478
This theorem is referenced by:  mendlmod  42495  mendassa  42496
  Copyright terms: Public domain W3C validator