Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlem Structured version   Visualization version   GIF version

Theorem zlmlem 20208
 Description: Lemma for zlmbas 20209 and zlmplusg 20210. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
zlmbas.w 𝑊 = (ℤMod‘𝐺)
zlmlem.2 𝐸 = Slot 𝑁
zlmlem.3 𝑁 ∈ ℕ
zlmlem.4 𝑁 < 5
Assertion
Ref Expression
zlmlem (𝐸𝐺) = (𝐸𝑊)

Proof of Theorem zlmlem
StepHypRef Expression
1 zlmbas.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2822 . . . . 5 (.g𝐺) = (.g𝐺)
31, 2zlmval 20207 . . . 4 (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
43fveq2d 6656 . . 3 (𝐺 ∈ V → (𝐸𝑊) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩)))
5 zlmlem.2 . . . . . 6 𝐸 = Slot 𝑁
6 zlmlem.3 . . . . . 6 𝑁 ∈ ℕ
75, 6ndxid 16500 . . . . 5 𝐸 = Slot (𝐸‘ndx)
85, 6ndxarg 16499 . . . . . . . 8 (𝐸‘ndx) = 𝑁
96nnrei 11634 . . . . . . . 8 𝑁 ∈ ℝ
108, 9eqeltri 2910 . . . . . . 7 (𝐸‘ndx) ∈ ℝ
11 zlmlem.4 . . . . . . . 8 𝑁 < 5
128, 11eqbrtri 5063 . . . . . . 7 (𝐸‘ndx) < 5
1310, 12ltneii 10742 . . . . . 6 (𝐸‘ndx) ≠ 5
14 scandx 16623 . . . . . 6 (Scalar‘ndx) = 5
1513, 14neeqtrri 3084 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
167, 15setsnid 16530 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
17 5lt6 11806 . . . . . . . 8 5 < 6
18 5re 11712 . . . . . . . . 9 5 ∈ ℝ
19 6re 11715 . . . . . . . . 9 6 ∈ ℝ
2010, 18, 19lttri 10755 . . . . . . . 8 (((𝐸‘ndx) < 5 ∧ 5 < 6) → (𝐸‘ndx) < 6)
2112, 17, 20mp2an 691 . . . . . . 7 (𝐸‘ndx) < 6
2210, 21ltneii 10742 . . . . . 6 (𝐸‘ndx) ≠ 6
23 vscandx 16625 . . . . . 6 ( ·𝑠 ‘ndx) = 6
2422, 23neeqtrri 3084 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
257, 24setsnid 16530 . . . 4 (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
2616, 25eqtri 2845 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
274, 26syl6reqr 2876 . 2 (𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
285str0 16526 . . 3 ∅ = (𝐸‘∅)
29 fvprc 6645 . . 3 𝐺 ∈ V → (𝐸𝐺) = ∅)
30 fvprc 6645 . . . . 5 𝐺 ∈ V → (ℤMod‘𝐺) = ∅)
311, 30syl5eq 2869 . . . 4 𝐺 ∈ V → 𝑊 = ∅)
3231fveq2d 6656 . . 3 𝐺 ∈ V → (𝐸𝑊) = (𝐸‘∅))
3328, 29, 323eqtr4a 2883 . 2 𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
3427, 33pm2.61i 185 1 (𝐸𝐺) = (𝐸𝑊)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1538   ∈ wcel 2114  Vcvv 3469  ∅c0 4265  ⟨cop 4545   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  ℝcr 10525   < clt 10664  ℕcn 11625  5c5 11683  6c6 11684  ndxcnx 16471   sSet csts 16472  Slot cslot 16473  Scalarcsca 16559   ·𝑠 cvsca 16560  .gcmg 18215  ℤringzring 20161  ℤModczlm 20192 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-ndx 16477  df-slot 16478  df-sets 16481  df-sca 16572  df-vsca 16573  df-zlm 20196 This theorem is referenced by:  zlmbas  20209  zlmplusg  20210  zlmmulr  20211
 Copyright terms: Public domain W3C validator