| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmlem | Structured version Visualization version GIF version | ||
| Description: Lemma for zlmbas 21433 and zlmplusg 21434. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| zlmlem.3 | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
| zlmlem.4 | ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
| Ref | Expression |
|---|---|
| zlmlem | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmlem.2 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | zlmlem.3 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
| 3 | 1, 2 | setsnid 17184 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
| 4 | zlmlem.4 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) | |
| 5 | 1, 4 | setsnid 17184 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
| 6 | 3, 5 | eqtri 2753 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
| 7 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 9 | 7, 8 | zlmval 21431 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
| 10 | 9 | fveq2d 6864 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 11 | 6, 10 | eqtr4id 2784 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
| 12 | 1 | str0 17165 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 13 | 12 | eqcomi 2739 | . . 3 ⊢ (𝐸‘∅) = ∅ |
| 14 | 13, 7 | fveqprc 17167 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
| 15 | 11, 14 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4298 〈cop 4597 ‘cfv 6513 (class class class)co 7389 sSet csts 17139 Slot cslot 17157 ndxcnx 17169 Scalarcsca 17229 ·𝑠 cvsca 17230 .gcmg 19005 ℤringczring 21362 ℤModczlm 21416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-sets 17140 df-slot 17158 df-zlm 21420 |
| This theorem is referenced by: zlmbas 21433 zlmplusg 21434 zlmmulr 21435 |
| Copyright terms: Public domain | W3C validator |