Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zlmlem | Structured version Visualization version GIF version |
Description: Lemma for zlmbas 20720 and zlmplusg 20722. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
zlmlem.3 | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
zlmlem.4 | ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
Ref | Expression |
---|---|
zlmlem | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlem.2 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | zlmlem.3 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
3 | 1, 2 | setsnid 16910 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
4 | zlmlem.4 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) | |
5 | 1, 4 | setsnid 16910 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
6 | 3, 5 | eqtri 2766 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
7 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
8 | eqid 2738 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
9 | 7, 8 | zlmval 20717 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
10 | 9 | fveq2d 6778 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
11 | 6, 10 | eqtr4id 2797 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
12 | 1 | str0 16890 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
13 | 12 | eqcomi 2747 | . . 3 ⊢ (𝐸‘∅) = ∅ |
14 | 13, 7 | fveqprc 16892 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
15 | 11, 14 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 〈cop 4567 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 Slot cslot 16882 ndxcnx 16894 Scalarcsca 16965 ·𝑠 cvsca 16966 .gcmg 18700 ℤringczring 20670 ℤModczlm 20702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-sets 16865 df-slot 16883 df-zlm 20706 |
This theorem is referenced by: zlmbas 20720 zlmplusg 20722 zlmmulr 20724 |
Copyright terms: Public domain | W3C validator |