MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlem Structured version   Visualization version   GIF version

Theorem zlmlem 20801
Description: Lemma for zlmbas 20803 and zlmplusg 20805. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
Hypotheses
Ref Expression
zlmbas.w 𝑊 = (ℤMod‘𝐺)
zlmlem.2 𝐸 = Slot (𝐸‘ndx)
zlmlem.3 (𝐸‘ndx) ≠ (Scalar‘ndx)
zlmlem.4 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
Assertion
Ref Expression
zlmlem (𝐸𝐺) = (𝐸𝑊)

Proof of Theorem zlmlem
StepHypRef Expression
1 zlmlem.2 . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 zlmlem.3 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
31, 2setsnid 16987 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
4 zlmlem.4 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
51, 4setsnid 16987 . . . 4 (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
63, 5eqtri 2765 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
7 zlmbas.w . . . . 5 𝑊 = (ℤMod‘𝐺)
8 eqid 2737 . . . . 5 (.g𝐺) = (.g𝐺)
97, 8zlmval 20800 . . . 4 (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
109fveq2d 6816 . . 3 (𝐺 ∈ V → (𝐸𝑊) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩)))
116, 10eqtr4id 2796 . 2 (𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
121str0 16967 . . . 4 ∅ = (𝐸‘∅)
1312eqcomi 2746 . . 3 (𝐸‘∅) = ∅
1413, 7fveqprc 16969 . 2 𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
1511, 14pm2.61i 182 1 (𝐸𝐺) = (𝐸𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  wne 2941  Vcvv 3441  c0 4267  cop 4577  cfv 6466  (class class class)co 7317   sSet csts 16941  Slot cslot 16959  ndxcnx 16971  Scalarcsca 17042   ·𝑠 cvsca 17043  .gcmg 18776  ringczring 20753  ℤModczlm 20785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-res 5620  df-iota 6418  df-fun 6468  df-fv 6474  df-ov 7320  df-oprab 7321  df-mpo 7322  df-sets 16942  df-slot 16960  df-zlm 20789
This theorem is referenced by:  zlmbas  20803  zlmplusg  20805  zlmmulr  20807
  Copyright terms: Public domain W3C validator