MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlem Structured version   Visualization version   GIF version

Theorem zlmlem 21432
Description: Lemma for zlmbas 21433 and zlmplusg 21434. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
Hypotheses
Ref Expression
zlmbas.w 𝑊 = (ℤMod‘𝐺)
zlmlem.2 𝐸 = Slot (𝐸‘ndx)
zlmlem.3 (𝐸‘ndx) ≠ (Scalar‘ndx)
zlmlem.4 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
Assertion
Ref Expression
zlmlem (𝐸𝐺) = (𝐸𝑊)

Proof of Theorem zlmlem
StepHypRef Expression
1 zlmlem.2 . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 zlmlem.3 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
31, 2setsnid 17184 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
4 zlmlem.4 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
51, 4setsnid 17184 . . . 4 (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
63, 5eqtri 2753 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
7 zlmbas.w . . . . 5 𝑊 = (ℤMod‘𝐺)
8 eqid 2730 . . . . 5 (.g𝐺) = (.g𝐺)
97, 8zlmval 21431 . . . 4 (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
109fveq2d 6864 . . 3 (𝐺 ∈ V → (𝐸𝑊) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩)))
116, 10eqtr4id 2784 . 2 (𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
121str0 17165 . . . 4 ∅ = (𝐸‘∅)
1312eqcomi 2739 . . 3 (𝐸‘∅) = ∅
1413, 7fveqprc 17167 . 2 𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
1511, 14pm2.61i 182 1 (𝐸𝐺) = (𝐸𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4298  cop 4597  cfv 6513  (class class class)co 7389   sSet csts 17139  Slot cslot 17157  ndxcnx 17169  Scalarcsca 17229   ·𝑠 cvsca 17230  .gcmg 19005  ringczring 21362  ℤModczlm 21416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-res 5652  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-sets 17140  df-slot 17158  df-zlm 21420
This theorem is referenced by:  zlmbas  21433  zlmplusg  21434  zlmmulr  21435
  Copyright terms: Public domain W3C validator