MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlem Structured version   Visualization version   GIF version

Theorem zlmlem 20630
Description: Lemma for zlmbas 20632 and zlmplusg 20634. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
Hypotheses
Ref Expression
zlmbas.w 𝑊 = (ℤMod‘𝐺)
zlmlem.2 𝐸 = Slot (𝐸‘ndx)
zlmlem.3 (𝐸‘ndx) ≠ (Scalar‘ndx)
zlmlem.4 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
Assertion
Ref Expression
zlmlem (𝐸𝐺) = (𝐸𝑊)

Proof of Theorem zlmlem
StepHypRef Expression
1 zlmlem.2 . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 zlmlem.3 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
31, 2setsnid 16838 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
4 zlmlem.4 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
51, 4setsnid 16838 . . . 4 (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
63, 5eqtri 2766 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
7 zlmbas.w . . . . 5 𝑊 = (ℤMod‘𝐺)
8 eqid 2738 . . . . 5 (.g𝐺) = (.g𝐺)
97, 8zlmval 20629 . . . 4 (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
109fveq2d 6760 . . 3 (𝐺 ∈ V → (𝐸𝑊) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩)))
116, 10eqtr4id 2798 . 2 (𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
121str0 16818 . . . 4 ∅ = (𝐸‘∅)
1312eqcomi 2747 . . 3 (𝐸‘∅) = ∅
1413, 7fveqprc 16820 . 2 𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
1511, 14pm2.61i 182 1 (𝐸𝐺) = (𝐸𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  Slot cslot 16810  ndxcnx 16822  Scalarcsca 16891   ·𝑠 cvsca 16892  .gcmg 18615  ringzring 20582  ℤModczlm 20614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-sets 16793  df-slot 16811  df-zlm 20618
This theorem is referenced by:  zlmbas  20632  zlmplusg  20634  zlmmulr  20636
  Copyright terms: Public domain W3C validator