![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmlem | Structured version Visualization version GIF version |
Description: Lemma for zlmbas 20266 and zlmplusg 20267. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlem.2 | ⊢ 𝐸 = Slot 𝑁 |
zlmlem.3 | ⊢ 𝑁 ∈ ℕ |
zlmlem.4 | ⊢ 𝑁 < 5 |
Ref | Expression |
---|---|
zlmlem | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
2 | eqid 2778 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | zlmval 20264 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
4 | 3 | fveq2d 6452 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
5 | zlmlem.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
6 | zlmlem.3 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
7 | 5, 6 | ndxid 16285 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
8 | 5, 6 | ndxarg 16284 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝑁 |
9 | 6 | nnrei 11388 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
10 | 8, 9 | eqeltri 2855 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
11 | zlmlem.4 | . . . . . . . 8 ⊢ 𝑁 < 5 | |
12 | 8, 11 | eqbrtri 4909 | . . . . . . 7 ⊢ (𝐸‘ndx) < 5 |
13 | 10, 12 | ltneii 10491 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 5 |
14 | scandx 16409 | . . . . . 6 ⊢ (Scalar‘ndx) = 5 | |
15 | 13, 14 | neeqtrri 3042 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
16 | 7, 15 | setsnid 16315 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
17 | 5lt6 11567 | . . . . . . . 8 ⊢ 5 < 6 | |
18 | 5re 11468 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
19 | 6re 11472 | . . . . . . . . 9 ⊢ 6 ∈ ℝ | |
20 | 10, 18, 19 | lttri 10504 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 5 ∧ 5 < 6) → (𝐸‘ndx) < 6) |
21 | 12, 17, 20 | mp2an 682 | . . . . . . 7 ⊢ (𝐸‘ndx) < 6 |
22 | 10, 21 | ltneii 10491 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 6 |
23 | vscandx 16411 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) = 6 | |
24 | 22, 23 | neeqtrri 3042 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
25 | 7, 24 | setsnid 16315 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
26 | 16, 25 | eqtri 2802 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
27 | 4, 26 | syl6reqr 2833 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
28 | 5 | str0 16311 | . . 3 ⊢ ∅ = (𝐸‘∅) |
29 | fvprc 6441 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
30 | fvprc 6441 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
31 | 1, 30 | syl5eq 2826 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
32 | 31 | fveq2d 6452 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘∅)) |
33 | 28, 29, 32 | 3eqtr4a 2840 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
34 | 27, 33 | pm2.61i 177 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∅c0 4141 〈cop 4404 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 ℝcr 10273 < clt 10413 ℕcn 11378 5c5 11437 6c6 11438 ndxcnx 16256 sSet csts 16257 Slot cslot 16258 Scalarcsca 16345 ·𝑠 cvsca 16346 .gcmg 17931 ℤringzring 20218 ℤModczlm 20249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-ndx 16262 df-slot 16263 df-sets 16266 df-sca 16358 df-vsca 16359 df-zlm 20253 |
This theorem is referenced by: zlmbas 20266 zlmplusg 20267 zlmmulr 20268 |
Copyright terms: Public domain | W3C validator |