![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmlem | Structured version Visualization version GIF version |
Description: Lemma for zlmbas 21068 and zlmplusg 21070. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
zlmlem.3 | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
zlmlem.4 | ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
Ref | Expression |
---|---|
zlmlem | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlem.2 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | zlmlem.3 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
3 | 1, 2 | setsnid 17142 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) |
4 | zlmlem.4 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) | |
5 | 1, 4 | setsnid 17142 | . . . 4 ⊢ (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
6 | 3, 5 | eqtri 2761 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
7 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
8 | eqid 2733 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
9 | 7, 8 | zlmval 21065 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
10 | 9 | fveq2d 6896 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩))) |
11 | 6, 10 | eqtr4id 2792 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
12 | 1 | str0 17122 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
13 | 12 | eqcomi 2742 | . . 3 ⊢ (𝐸‘∅) = ∅ |
14 | 13, 7 | fveqprc 17124 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
15 | 11, 14 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ∅c0 4323 ⟨cop 4635 ‘cfv 6544 (class class class)co 7409 sSet csts 17096 Slot cslot 17114 ndxcnx 17126 Scalarcsca 17200 ·𝑠 cvsca 17201 .gcmg 18950 ℤringczring 21017 ℤModczlm 21050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-sets 17097 df-slot 17115 df-zlm 21054 |
This theorem is referenced by: zlmbas 21068 zlmplusg 21070 zlmmulr 21072 |
Copyright terms: Public domain | W3C validator |