MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlem Structured version   Visualization version   GIF version

Theorem zlmlem 21423
Description: Lemma for zlmbas 21424 and zlmplusg 21425. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
Hypotheses
Ref Expression
zlmbas.w 𝑊 = (ℤMod‘𝐺)
zlmlem.2 𝐸 = Slot (𝐸‘ndx)
zlmlem.3 (𝐸‘ndx) ≠ (Scalar‘ndx)
zlmlem.4 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
Assertion
Ref Expression
zlmlem (𝐸𝐺) = (𝐸𝑊)

Proof of Theorem zlmlem
StepHypRef Expression
1 zlmlem.2 . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 zlmlem.3 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
31, 2setsnid 17119 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
4 zlmlem.4 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
51, 4setsnid 17119 . . . 4 (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
63, 5eqtri 2752 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
7 zlmbas.w . . . . 5 𝑊 = (ℤMod‘𝐺)
8 eqid 2729 . . . . 5 (.g𝐺) = (.g𝐺)
97, 8zlmval 21422 . . . 4 (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
109fveq2d 6826 . . 3 (𝐺 ∈ V → (𝐸𝑊) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩)))
116, 10eqtr4id 2783 . 2 (𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
121str0 17100 . . . 4 ∅ = (𝐸‘∅)
1312eqcomi 2738 . . 3 (𝐸‘∅) = ∅
1413, 7fveqprc 17102 . 2 𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑊))
1511, 14pm2.61i 182 1 (𝐸𝐺) = (𝐸𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  c0 4284  cop 4583  cfv 6482  (class class class)co 7349   sSet csts 17074  Slot cslot 17092  ndxcnx 17104  Scalarcsca 17164   ·𝑠 cvsca 17165  .gcmg 18946  ringczring 21353  ℤModczlm 21407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-sets 17075  df-slot 17093  df-zlm 21411
This theorem is referenced by:  zlmbas  21424  zlmplusg  21425  zlmmulr  21426
  Copyright terms: Public domain W3C validator