Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqprc | Structured version Visualization version GIF version |
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 31530. (Contributed by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
oveqprc.e | ⊢ (𝐸‘∅) = ∅ |
oveqprc.z | ⊢ 𝑍 = (𝑋𝑂𝑌) |
oveqprc.r | ⊢ Rel dom 𝑂 |
Ref | Expression |
---|---|
oveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
2 | 1 | eqcomi 2747 | . 2 ⊢ ∅ = (𝐸‘∅) |
3 | fvprc 6766 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
4 | oveqprc.z | . . . 4 ⊢ 𝑍 = (𝑋𝑂𝑌) | |
5 | oveqprc.r | . . . . 5 ⊢ Rel dom 𝑂 | |
6 | 5 | ovprc1 7314 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝑋𝑂𝑌) = ∅) |
7 | 4, 6 | eqtrid 2790 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑍 = ∅) |
8 | 7 | fveq2d 6778 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑍) = (𝐸‘∅)) |
9 | 2, 3, 8 | 3eqtr4a 2804 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 dom cdm 5589 Rel wrel 5594 ‘cfv 6433 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: setsnid 16910 ressbas 16947 resseqnbas 16951 tnglem 23796 resvlem 31530 |
Copyright terms: Public domain | W3C validator |