Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqprc | Structured version Visualization version GIF version |
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 31407. (Contributed by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
oveqprc.e | ⊢ (𝐸‘∅) = ∅ |
oveqprc.z | ⊢ 𝑍 = (𝑋𝑂𝑌) |
oveqprc.r | ⊢ Rel dom 𝑂 |
Ref | Expression |
---|---|
oveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
2 | 1 | eqcomi 2748 | . 2 ⊢ ∅ = (𝐸‘∅) |
3 | fvprc 6745 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
4 | oveqprc.z | . . . 4 ⊢ 𝑍 = (𝑋𝑂𝑌) | |
5 | oveqprc.r | . . . . 5 ⊢ Rel dom 𝑂 | |
6 | 5 | ovprc1 7291 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝑋𝑂𝑌) = ∅) |
7 | 4, 6 | eqtrid 2791 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑍 = ∅) |
8 | 7 | fveq2d 6757 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑍) = (𝐸‘∅)) |
9 | 2, 3, 8 | 3eqtr4a 2806 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∅c0 4254 dom cdm 5579 Rel wrel 5584 ‘cfv 6415 (class class class)co 7252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5585 df-rel 5586 df-dm 5589 df-iota 6373 df-fv 6423 df-ov 7255 |
This theorem is referenced by: setsnid 16813 ressbas 16848 resseqnbas 16852 tnglem 23677 resvlem 31407 |
Copyright terms: Public domain | W3C validator |