MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oveqprc Structured version   Visualization version   GIF version

Theorem oveqprc 17239
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 33322. (Contributed by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
oveqprc.e (𝐸‘∅) = ∅
oveqprc.z 𝑍 = (𝑋𝑂𝑌)
oveqprc.r Rel dom 𝑂
Assertion
Ref Expression
oveqprc 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑍))

Proof of Theorem oveqprc
StepHypRef Expression
1 oveqprc.e . . 3 (𝐸‘∅) = ∅
21eqcomi 2749 . 2 ∅ = (𝐸‘∅)
3 fvprc 6912 . 2 𝑋 ∈ V → (𝐸𝑋) = ∅)
4 oveqprc.z . . . 4 𝑍 = (𝑋𝑂𝑌)
5 oveqprc.r . . . . 5 Rel dom 𝑂
65ovprc1 7487 . . . 4 𝑋 ∈ V → (𝑋𝑂𝑌) = ∅)
74, 6eqtrid 2792 . . 3 𝑋 ∈ V → 𝑍 = ∅)
87fveq2d 6924 . 2 𝑋 ∈ V → (𝐸𝑍) = (𝐸‘∅))
92, 3, 83eqtr4a 2806 1 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  dom cdm 5700  Rel wrel 5705  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  setsnid  17256  ressbas  17293  resseqnbas  17300  tnglem  24674  resvlem  33322
  Copyright terms: Public domain W3C validator