MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oveqprc Structured version   Visualization version   GIF version

Theorem oveqprc 17103
Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 33280. (Contributed by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
oveqprc.e (𝐸‘∅) = ∅
oveqprc.z 𝑍 = (𝑋𝑂𝑌)
oveqprc.r Rel dom 𝑂
Assertion
Ref Expression
oveqprc 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑍))

Proof of Theorem oveqprc
StepHypRef Expression
1 oveqprc.e . . 3 (𝐸‘∅) = ∅
21eqcomi 2738 . 2 ∅ = (𝐸‘∅)
3 fvprc 6814 . 2 𝑋 ∈ V → (𝐸𝑋) = ∅)
4 oveqprc.z . . . 4 𝑍 = (𝑋𝑂𝑌)
5 oveqprc.r . . . . 5 Rel dom 𝑂
65ovprc1 7388 . . . 4 𝑋 ∈ V → (𝑋𝑂𝑌) = ∅)
74, 6eqtrid 2776 . . 3 𝑋 ∈ V → 𝑍 = ∅)
87fveq2d 6826 . 2 𝑋 ∈ V → (𝐸𝑍) = (𝐸‘∅))
92, 3, 83eqtr4a 2790 1 𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  dom cdm 5619  Rel wrel 5624  cfv 6482  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-dm 5629  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by:  setsnid  17119  ressbas  17147  resseqnbas  17153  tnglem  24526  resvlem  33280
  Copyright terms: Public domain W3C validator