| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqprc | Structured version Visualization version GIF version | ||
| Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 33357. (Contributed by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| oveqprc.e | ⊢ (𝐸‘∅) = ∅ |
| oveqprc.z | ⊢ 𝑍 = (𝑋𝑂𝑌) |
| oveqprc.r | ⊢ Rel dom 𝑂 |
| Ref | Expression |
|---|---|
| oveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
| 2 | 1 | eqcomi 2746 | . 2 ⊢ ∅ = (𝐸‘∅) |
| 3 | fvprc 6898 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
| 4 | oveqprc.z | . . . 4 ⊢ 𝑍 = (𝑋𝑂𝑌) | |
| 5 | oveqprc.r | . . . . 5 ⊢ Rel dom 𝑂 | |
| 6 | 5 | ovprc1 7470 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝑋𝑂𝑌) = ∅) |
| 7 | 4, 6 | eqtrid 2789 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑍 = ∅) |
| 8 | 7 | fveq2d 6910 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑍) = (𝐸‘∅)) |
| 9 | 2, 3, 8 | 3eqtr4a 2803 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∅c0 4333 dom cdm 5685 Rel wrel 5690 ‘cfv 6561 (class class class)co 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: setsnid 17245 ressbas 17280 resseqnbas 17287 tnglem 24653 resvlem 33357 |
| Copyright terms: Public domain | W3C validator |