| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqprc | Structured version Visualization version GIF version | ||
| Description: Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 33312. (Contributed by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| oveqprc.e | ⊢ (𝐸‘∅) = ∅ |
| oveqprc.z | ⊢ 𝑍 = (𝑋𝑂𝑌) |
| oveqprc.r | ⊢ Rel dom 𝑂 |
| Ref | Expression |
|---|---|
| oveqprc | ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqprc.e | . . 3 ⊢ (𝐸‘∅) = ∅ | |
| 2 | 1 | eqcomi 2739 | . 2 ⊢ ∅ = (𝐸‘∅) |
| 3 | fvprc 6853 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = ∅) | |
| 4 | oveqprc.z | . . . 4 ⊢ 𝑍 = (𝑋𝑂𝑌) | |
| 5 | oveqprc.r | . . . . 5 ⊢ Rel dom 𝑂 | |
| 6 | 5 | ovprc1 7429 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝑋𝑂𝑌) = ∅) |
| 7 | 4, 6 | eqtrid 2777 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑍 = ∅) |
| 8 | 7 | fveq2d 6865 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑍) = (𝐸‘∅)) |
| 9 | 2, 3, 8 | 3eqtr4a 2791 | 1 ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 dom cdm 5641 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: setsnid 17185 ressbas 17213 resseqnbas 17219 tnglem 24535 resvlem 33312 |
| Copyright terms: Public domain | W3C validator |