MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvi Structured version   Visualization version   GIF version

Theorem strfvi 17103
Description: Structure slot extractors cannot distinguish between proper classes and , so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
strfvi.e 𝐸 = Slot 𝑁
strfvi.x 𝑋 = (𝐸𝑆)
Assertion
Ref Expression
strfvi 𝑋 = (𝐸‘( I ‘𝑆))

Proof of Theorem strfvi
StepHypRef Expression
1 strfvi.x . 2 𝑋 = (𝐸𝑆)
2 fvi 6904 . . . . 5 (𝑆 ∈ V → ( I ‘𝑆) = 𝑆)
32eqcomd 2739 . . . 4 (𝑆 ∈ V → 𝑆 = ( I ‘𝑆))
43fveq2d 6832 . . 3 (𝑆 ∈ V → (𝐸𝑆) = (𝐸‘( I ‘𝑆)))
5 strfvi.e . . . . 5 𝐸 = Slot 𝑁
65str0 17102 . . . 4 ∅ = (𝐸‘∅)
7 fvprc 6820 . . . 4 𝑆 ∈ V → (𝐸𝑆) = ∅)
8 fvprc 6820 . . . . 5 𝑆 ∈ V → ( I ‘𝑆) = ∅)
98fveq2d 6832 . . . 4 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅))
106, 7, 93eqtr4a 2794 . . 3 𝑆 ∈ V → (𝐸𝑆) = (𝐸‘( I ‘𝑆)))
114, 10pm2.61i 182 . 2 (𝐸𝑆) = (𝐸‘( I ‘𝑆))
121, 11eqtri 2756 1 𝑋 = (𝐸‘( I ‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282   I cid 5513  cfv 6486  Slot cslot 17094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-slot 17095
This theorem is referenced by:  rlmscaf  21143  islidl  21154  lidlrsppropd  21183  rspsn  21272  ply1tmcl  22187  ply1scltm  22196  ply1sclf  22200  ply1scl0OLD  22206  ply1scl1OLD  22209  nrgtrg  24606
  Copyright terms: Public domain W3C validator