| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version | ||
| Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
| strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
| Ref | Expression |
|---|---|
| strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
| 2 | fvi 6898 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
| 3 | 2 | eqcomd 2737 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
| 4 | 3 | fveq2d 6826 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
| 5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
| 6 | 5 | str0 17097 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 7 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
| 8 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
| 9 | 8 | fveq2d 6826 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
| 10 | 6, 7, 9 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
| 11 | 4, 10 | pm2.61i 182 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
| 12 | 1, 11 | eqtri 2754 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 I cid 5510 ‘cfv 6481 Slot cslot 17089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-slot 17090 |
| This theorem is referenced by: rlmscaf 21139 islidl 21150 lidlrsppropd 21179 rspsn 21268 ply1tmcl 22184 ply1scltm 22193 ply1sclf 22197 ply1scl0OLD 22203 ply1scl1OLD 22206 nrgtrg 24603 |
| Copyright terms: Public domain | W3C validator |