| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version | ||
| Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
| strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
| Ref | Expression |
|---|---|
| strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
| 2 | fvi 6960 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
| 3 | 2 | eqcomd 2742 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
| 4 | 3 | fveq2d 6885 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
| 5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
| 6 | 5 | str0 17213 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 7 | fvprc 6873 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
| 8 | fvprc 6873 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
| 9 | 8 | fveq2d 6885 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
| 10 | 6, 7, 9 | 3eqtr4a 2797 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
| 11 | 4, 10 | pm2.61i 182 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
| 12 | 1, 11 | eqtri 2759 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 I cid 5552 ‘cfv 6536 Slot cslot 17205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-slot 17206 |
| This theorem is referenced by: rlmscaf 21170 islidl 21181 lidlrsppropd 21210 rspsn 21299 ply1tmcl 22214 ply1scltm 22223 ply1sclf 22227 ply1scl0OLD 22233 ply1scl1OLD 22236 nrgtrg 24634 |
| Copyright terms: Public domain | W3C validator |