Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version |
Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
Ref | Expression |
---|---|
strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
2 | fvi 6876 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
3 | 2 | eqcomd 2742 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
4 | 3 | fveq2d 6808 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | str0 16939 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
7 | fvprc 6796 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
8 | fvprc 6796 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
9 | 8 | fveq2d 6808 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
10 | 6, 7, 9 | 3eqtr4a 2802 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
11 | 4, 10 | pm2.61i 182 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
12 | 1, 11 | eqtri 2764 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 I cid 5499 ‘cfv 6458 Slot cslot 16931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-slot 16932 |
This theorem is referenced by: rlmscaf 20528 islidl 20531 lidlrsppropd 20550 rspsn 20574 ply1tmcl 21492 ply1scltm 21501 ply1sclf 21505 ply1scl0 21510 ply1scl1 21512 nrgtrg 23903 |
Copyright terms: Public domain | W3C validator |