| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version | ||
| Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
| strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
| Ref | Expression |
|---|---|
| strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
| 2 | fvi 6904 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
| 3 | 2 | eqcomd 2739 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
| 4 | 3 | fveq2d 6832 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
| 5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
| 6 | 5 | str0 17102 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 7 | fvprc 6820 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
| 8 | fvprc 6820 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
| 9 | 8 | fveq2d 6832 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
| 10 | 6, 7, 9 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
| 11 | 4, 10 | pm2.61i 182 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
| 12 | 1, 11 | eqtri 2756 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 I cid 5513 ‘cfv 6486 Slot cslot 17094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-slot 17095 |
| This theorem is referenced by: rlmscaf 21143 islidl 21154 lidlrsppropd 21183 rspsn 21272 ply1tmcl 22187 ply1scltm 22196 ply1sclf 22200 ply1scl0OLD 22206 ply1scl1OLD 22209 nrgtrg 24606 |
| Copyright terms: Public domain | W3C validator |