| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version | ||
| Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
| strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
| Ref | Expression |
|---|---|
| strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
| 2 | fvi 6966 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
| 3 | 2 | eqcomd 2740 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
| 4 | 3 | fveq2d 6891 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
| 5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
| 6 | 5 | str0 17209 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 7 | fvprc 6879 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
| 8 | fvprc 6879 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
| 9 | 8 | fveq2d 6891 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
| 10 | 6, 7, 9 | 3eqtr4a 2795 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
| 11 | 4, 10 | pm2.61i 182 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
| 12 | 1, 11 | eqtri 2757 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∅c0 4315 I cid 5559 ‘cfv 6542 Slot cslot 17201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-slot 17202 |
| This theorem is referenced by: rlmscaf 21181 islidl 21192 lidlrsppropd 21221 rspsn 21310 ply1tmcl 22242 ply1scltm 22251 ply1sclf 22255 ply1scl0OLD 22261 ply1scl1OLD 22264 nrgtrg 24666 |
| Copyright terms: Public domain | W3C validator |