![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version |
Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
Ref | Expression |
---|---|
strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
2 | fvi 6517 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
3 | 2 | eqcomd 2784 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
4 | 3 | fveq2d 6452 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | str0 16311 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
7 | fvprc 6441 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
8 | fvprc 6441 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
9 | 8 | fveq2d 6452 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
10 | 6, 7, 9 | 3eqtr4a 2840 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
11 | 4, 10 | pm2.61i 177 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
12 | 1, 11 | eqtri 2802 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∅c0 4141 I cid 5262 ‘cfv 6137 Slot cslot 16258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-iota 6101 df-fun 6139 df-fv 6145 df-slot 16263 |
This theorem is referenced by: rlmscaf 19609 islidl 19612 lidlrsppropd 19631 rspsn 19655 ply1tmcl 20042 ply1scltm 20051 ply1sclf 20055 ply1scl0 20060 ply1scl1 20062 nrgtrg 22906 |
Copyright terms: Public domain | W3C validator |