![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version |
Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
Ref | Expression |
---|---|
strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
2 | fvi 6967 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
3 | 2 | eqcomd 2737 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
4 | 3 | fveq2d 6895 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | str0 17129 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
7 | fvprc 6883 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
8 | fvprc 6883 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
9 | 8 | fveq2d 6895 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
10 | 6, 7, 9 | 3eqtr4a 2797 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
11 | 4, 10 | pm2.61i 182 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
12 | 1, 11 | eqtri 2759 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 I cid 5573 ‘cfv 6543 Slot cslot 17121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-slot 17122 |
This theorem is referenced by: rlmscaf 21065 islidl 21070 lidlrsppropd 21093 rspsn 21181 ply1tmcl 22114 ply1scltm 22123 ply1sclf 22127 ply1scl0OLD 22133 ply1scl1OLD 22136 nrgtrg 24527 |
Copyright terms: Public domain | W3C validator |