MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvi Structured version   Visualization version   GIF version

Theorem strfvi 17130
Description: Structure slot extractors cannot distinguish between proper classes and , so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
strfvi.e 𝐸 = Slot 𝑁
strfvi.x 𝑋 = (𝐸𝑆)
Assertion
Ref Expression
strfvi 𝑋 = (𝐸‘( I ‘𝑆))

Proof of Theorem strfvi
StepHypRef Expression
1 strfvi.x . 2 𝑋 = (𝐸𝑆)
2 fvi 6967 . . . . 5 (𝑆 ∈ V → ( I ‘𝑆) = 𝑆)
32eqcomd 2737 . . . 4 (𝑆 ∈ V → 𝑆 = ( I ‘𝑆))
43fveq2d 6895 . . 3 (𝑆 ∈ V → (𝐸𝑆) = (𝐸‘( I ‘𝑆)))
5 strfvi.e . . . . 5 𝐸 = Slot 𝑁
65str0 17129 . . . 4 ∅ = (𝐸‘∅)
7 fvprc 6883 . . . 4 𝑆 ∈ V → (𝐸𝑆) = ∅)
8 fvprc 6883 . . . . 5 𝑆 ∈ V → ( I ‘𝑆) = ∅)
98fveq2d 6895 . . . 4 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅))
106, 7, 93eqtr4a 2797 . . 3 𝑆 ∈ V → (𝐸𝑆) = (𝐸‘( I ‘𝑆)))
114, 10pm2.61i 182 . 2 (𝐸𝑆) = (𝐸‘( I ‘𝑆))
121, 11eqtri 2759 1 𝑋 = (𝐸‘( I ‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2105  Vcvv 3473  c0 4322   I cid 5573  cfv 6543  Slot cslot 17121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-slot 17122
This theorem is referenced by:  rlmscaf  21065  islidl  21070  lidlrsppropd  21093  rspsn  21181  ply1tmcl  22114  ply1scltm  22123  ply1sclf  22127  ply1scl0OLD  22133  ply1scl1OLD  22136  nrgtrg  24527
  Copyright terms: Public domain W3C validator