MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvi Structured version   Visualization version   GIF version

Theorem strfvi 16529
Description: Structure slot extractors cannot distinguish between proper classes and , so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
strfvi.e 𝐸 = Slot 𝑁
strfvi.x 𝑋 = (𝐸𝑆)
Assertion
Ref Expression
strfvi 𝑋 = (𝐸‘( I ‘𝑆))

Proof of Theorem strfvi
StepHypRef Expression
1 strfvi.x . 2 𝑋 = (𝐸𝑆)
2 fvi 6715 . . . . 5 (𝑆 ∈ V → ( I ‘𝑆) = 𝑆)
32eqcomd 2804 . . . 4 (𝑆 ∈ V → 𝑆 = ( I ‘𝑆))
43fveq2d 6649 . . 3 (𝑆 ∈ V → (𝐸𝑆) = (𝐸‘( I ‘𝑆)))
5 strfvi.e . . . . 5 𝐸 = Slot 𝑁
65str0 16527 . . . 4 ∅ = (𝐸‘∅)
7 fvprc 6638 . . . 4 𝑆 ∈ V → (𝐸𝑆) = ∅)
8 fvprc 6638 . . . . 5 𝑆 ∈ V → ( I ‘𝑆) = ∅)
98fveq2d 6649 . . . 4 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅))
106, 7, 93eqtr4a 2859 . . 3 𝑆 ∈ V → (𝐸𝑆) = (𝐸‘( I ‘𝑆)))
114, 10pm2.61i 185 . 2 (𝐸𝑆) = (𝐸‘( I ‘𝑆))
121, 11eqtri 2821 1 𝑋 = (𝐸‘( I ‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243   I cid 5424  cfv 6324  Slot cslot 16474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-slot 16479
This theorem is referenced by:  rlmscaf  19974  islidl  19977  lidlrsppropd  19996  rspsn  20020  ply1tmcl  20901  ply1scltm  20910  ply1sclf  20914  ply1scl0  20919  ply1scl1  20921  nrgtrg  23296
  Copyright terms: Public domain W3C validator