Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfvi | Structured version Visualization version GIF version |
Description: Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
strfvi.e | ⊢ 𝐸 = Slot 𝑁 |
strfvi.x | ⊢ 𝑋 = (𝐸‘𝑆) |
Ref | Expression |
---|---|
strfvi | ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvi.x | . 2 ⊢ 𝑋 = (𝐸‘𝑆) | |
2 | fvi 6883 | . . . . 5 ⊢ (𝑆 ∈ V → ( I ‘𝑆) = 𝑆) | |
3 | 2 | eqcomd 2743 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 = ( I ‘𝑆)) |
4 | 3 | fveq2d 6815 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
5 | strfvi.e | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | str0 16960 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
7 | fvprc 6803 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
8 | fvprc 6803 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ( I ‘𝑆) = ∅) | |
9 | 8 | fveq2d 6815 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅)) |
10 | 6, 7, 9 | 3eqtr4a 2803 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = (𝐸‘( I ‘𝑆))) |
11 | 4, 10 | pm2.61i 182 | . 2 ⊢ (𝐸‘𝑆) = (𝐸‘( I ‘𝑆)) |
12 | 1, 11 | eqtri 2765 | 1 ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4267 I cid 5506 ‘cfv 6465 Slot cslot 16952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 df-slot 16953 |
This theorem is referenced by: rlmscaf 20551 islidl 20554 lidlrsppropd 20573 rspsn 20597 ply1tmcl 21515 ply1scltm 21524 ply1sclf 21528 ply1scl0 21533 ply1scl1 21535 nrgtrg 23926 |
Copyright terms: Public domain | W3C validator |