MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvi Structured version   Visualization version   GIF version

Theorem strfvi 17224
Description: Structure slot extractors cannot distinguish between proper classes and , so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
strfvi.e 𝐸 = Slot 𝑁
strfvi.x 𝑋 = (𝐸𝑆)
Assertion
Ref Expression
strfvi 𝑋 = (𝐸‘( I ‘𝑆))

Proof of Theorem strfvi
StepHypRef Expression
1 strfvi.x . 2 𝑋 = (𝐸𝑆)
2 fvi 6985 . . . . 5 (𝑆 ∈ V → ( I ‘𝑆) = 𝑆)
32eqcomd 2741 . . . 4 (𝑆 ∈ V → 𝑆 = ( I ‘𝑆))
43fveq2d 6911 . . 3 (𝑆 ∈ V → (𝐸𝑆) = (𝐸‘( I ‘𝑆)))
5 strfvi.e . . . . 5 𝐸 = Slot 𝑁
65str0 17223 . . . 4 ∅ = (𝐸‘∅)
7 fvprc 6899 . . . 4 𝑆 ∈ V → (𝐸𝑆) = ∅)
8 fvprc 6899 . . . . 5 𝑆 ∈ V → ( I ‘𝑆) = ∅)
98fveq2d 6911 . . . 4 𝑆 ∈ V → (𝐸‘( I ‘𝑆)) = (𝐸‘∅))
106, 7, 93eqtr4a 2801 . . 3 𝑆 ∈ V → (𝐸𝑆) = (𝐸‘( I ‘𝑆)))
114, 10pm2.61i 182 . 2 (𝐸𝑆) = (𝐸‘( I ‘𝑆))
121, 11eqtri 2763 1 𝑋 = (𝐸‘( I ‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339   I cid 5582  cfv 6563  Slot cslot 17215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-slot 17216
This theorem is referenced by:  rlmscaf  21232  islidl  21243  lidlrsppropd  21272  rspsn  21361  ply1tmcl  22291  ply1scltm  22300  ply1sclf  22304  ply1scl0OLD  22310  ply1scl1OLD  22313  nrgtrg  24727
  Copyright terms: Public domain W3C validator