MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttglem Structured version   Visualization version   GIF version

Theorem ttglem 28885
Description: Lemma for ttgbas 28887, ttgvsca 28892 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttglem.e 𝐸 = Slot (𝐸‘ndx)
ttglem.l (𝐸‘ndx) ≠ (LineG‘ndx)
ttglem.i (𝐸‘ndx) ≠ (Itv‘ndx)
Assertion
Ref Expression
ttglem (𝐸𝐻) = (𝐸𝐺)

Proof of Theorem ttglem
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttglem.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 ttglem.i . . . . 5 (𝐸‘ndx) ≠ (Itv‘ndx)
31, 2setsnid 17245 . . . 4 (𝐸𝐻) = (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩))
4 ttglem.l . . . . 5 (𝐸‘ndx) ≠ (LineG‘ndx)
51, 4setsnid 17245 . . . 4 (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩)) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
63, 5eqtri 2765 . . 3 (𝐸𝐻) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
7 ttgval.n . . . . . 6 𝐺 = (toTG‘𝐻)
8 eqid 2737 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
9 eqid 2737 . . . . . 6 (-g𝐻) = (-g𝐻)
10 eqid 2737 . . . . . 6 ( ·𝑠𝐻) = ( ·𝑠𝐻)
11 eqid 2737 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
127, 8, 9, 10, 11ttgval 28883 . . . . 5 (𝐻 ∈ V → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})))
1312simpld 494 . . . 4 (𝐻 ∈ V → 𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
1413fveq2d 6910 . . 3 (𝐻 ∈ V → (𝐸𝐺) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩)))
156, 14eqtr4id 2796 . 2 (𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
161str0 17226 . . . 4 ∅ = (𝐸‘∅)
1716eqcomi 2746 . . 3 (𝐸‘∅) = ∅
1817, 7fveqprc 17228 . 2 𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
1915, 18pm2.61i 182 1 (𝐸𝐻) = (𝐸𝐺)
Colors of variables: wff setvar class
Syntax hints:  w3o 1086   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  c0 4333  cop 4632  cfv 6561  (class class class)co 7431  cmpo 7433  0cc0 11155  1c1 11156  [,]cicc 13390   sSet csts 17200  Slot cslot 17218  ndxcnx 17230  Basecbs 17247   ·𝑠 cvsca 17301  -gcsg 18953  Itvcitv 28441  LineGclng 28442  toTGcttg 28881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-dec 12734  df-sets 17201  df-slot 17219  df-ndx 17231  df-itv 28443  df-lng 28444  df-ttg 28882
This theorem is referenced by:  ttgbas  28887  ttgplusg  28889  ttgvsca  28892  ttgds  28894
  Copyright terms: Public domain W3C validator