| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttglem | Structured version Visualization version GIF version | ||
| Description: Lemma for ttgbas 28857, ttgvsca 28860 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
| ttglem.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| ttglem.l | ⊢ (𝐸‘ndx) ≠ (LineG‘ndx) |
| ttglem.i | ⊢ (𝐸‘ndx) ≠ (Itv‘ndx) |
| Ref | Expression |
|---|---|
| ttglem | ⊢ (𝐸‘𝐻) = (𝐸‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttglem.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | ttglem.i | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Itv‘ndx) | |
| 3 | 1, 2 | setsnid 17154 | . . . 4 ⊢ (𝐸‘𝐻) = (𝐸‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉)) |
| 4 | ttglem.l | . . . . 5 ⊢ (𝐸‘ndx) ≠ (LineG‘ndx) | |
| 5 | 1, 4 | setsnid 17154 | . . . 4 ⊢ (𝐸‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉)) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 6 | 3, 5 | eqtri 2752 | . . 3 ⊢ (𝐸‘𝐻) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 7 | ttgval.n | . . . . . 6 ⊢ 𝐺 = (toTG‘𝐻) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘𝐻) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
| 12 | 7, 8, 9, 10, 11 | ttgval 28855 | . . . . 5 ⊢ (𝐻 ∈ V → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))}))) |
| 13 | 12 | simpld 494 | . . . 4 ⊢ (𝐻 ∈ V → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 14 | 13 | fveq2d 6844 | . . 3 ⊢ (𝐻 ∈ V → (𝐸‘𝐺) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉))) |
| 15 | 6, 14 | eqtr4id 2783 | . 2 ⊢ (𝐻 ∈ V → (𝐸‘𝐻) = (𝐸‘𝐺)) |
| 16 | 1 | str0 17135 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 17 | 16 | eqcomi 2738 | . . 3 ⊢ (𝐸‘∅) = ∅ |
| 18 | 17, 7 | fveqprc 17137 | . 2 ⊢ (¬ 𝐻 ∈ V → (𝐸‘𝐻) = (𝐸‘𝐺)) |
| 19 | 15, 18 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐻) = (𝐸‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3402 Vcvv 3444 ∅c0 4292 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 0cc0 11044 1c1 11045 [,]cicc 13285 sSet csts 17109 Slot cslot 17127 ndxcnx 17139 Basecbs 17155 ·𝑠 cvsca 17200 -gcsg 18849 Itvcitv 28413 LineGclng 28414 toTGcttg 28853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-itv 28415 df-lng 28416 df-ttg 28854 |
| This theorem is referenced by: ttgbas 28857 ttgplusg 28858 ttgvsca 28860 ttgds 28861 |
| Copyright terms: Public domain | W3C validator |