MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttglem Structured version   Visualization version   GIF version

Theorem ttglem 28810
Description: Lemma for ttgbas 28811, ttgvsca 28814 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttglem.e 𝐸 = Slot (𝐸‘ndx)
ttglem.l (𝐸‘ndx) ≠ (LineG‘ndx)
ttglem.i (𝐸‘ndx) ≠ (Itv‘ndx)
Assertion
Ref Expression
ttglem (𝐸𝐻) = (𝐸𝐺)

Proof of Theorem ttglem
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttglem.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 ttglem.i . . . . 5 (𝐸‘ndx) ≠ (Itv‘ndx)
31, 2setsnid 17185 . . . 4 (𝐸𝐻) = (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩))
4 ttglem.l . . . . 5 (𝐸‘ndx) ≠ (LineG‘ndx)
51, 4setsnid 17185 . . . 4 (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩)) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
63, 5eqtri 2753 . . 3 (𝐸𝐻) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
7 ttgval.n . . . . . 6 𝐺 = (toTG‘𝐻)
8 eqid 2730 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
9 eqid 2730 . . . . . 6 (-g𝐻) = (-g𝐻)
10 eqid 2730 . . . . . 6 ( ·𝑠𝐻) = ( ·𝑠𝐻)
11 eqid 2730 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
127, 8, 9, 10, 11ttgval 28809 . . . . 5 (𝐻 ∈ V → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})))
1312simpld 494 . . . 4 (𝐻 ∈ V → 𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
1413fveq2d 6865 . . 3 (𝐻 ∈ V → (𝐸𝐺) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩)))
156, 14eqtr4id 2784 . 2 (𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
161str0 17166 . . . 4 ∅ = (𝐸‘∅)
1716eqcomi 2739 . . 3 (𝐸‘∅) = ∅
1817, 7fveqprc 17168 . 2 𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
1915, 18pm2.61i 182 1 (𝐸𝐻) = (𝐸𝐺)
Colors of variables: wff setvar class
Syntax hints:  w3o 1085   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  c0 4299  cop 4598  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076  [,]cicc 13316   sSet csts 17140  Slot cslot 17158  ndxcnx 17170  Basecbs 17186   ·𝑠 cvsca 17231  -gcsg 18874  Itvcitv 28367  LineGclng 28368  toTGcttg 28807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-itv 28369  df-lng 28370  df-ttg 28808
This theorem is referenced by:  ttgbas  28811  ttgplusg  28812  ttgvsca  28814  ttgds  28815
  Copyright terms: Public domain W3C validator