Step | Hyp | Ref
| Expression |
1 | | ttglem.e |
. . . . 5
β’ πΈ = Slot (πΈβndx) |
2 | | ttglem.i |
. . . . 5
β’ (πΈβndx) β
(Itvβndx) |
3 | 1, 2 | setsnid 17146 |
. . . 4
β’ (πΈβπ») = (πΈβ(π» sSet β¨(Itvβndx), (π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ βπ β (0[,]1)(π§(-gβπ»)π₯) = (π( Β·π
βπ»)(π¦(-gβπ»)π₯))})β©)) |
4 | | ttglem.l |
. . . . 5
β’ (πΈβndx) β
(LineGβndx) |
5 | 1, 4 | setsnid 17146 |
. . . 4
β’ (πΈβ(π» sSet β¨(Itvβndx), (π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ βπ β (0[,]1)(π§(-gβπ»)π₯) = (π( Β·π
βπ»)(π¦(-gβπ»)π₯))})β©)) = (πΈβ((π» sSet β¨(Itvβndx), (π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ βπ β (0[,]1)(π§(-gβπ»)π₯) = (π( Β·π
βπ»)(π¦(-gβπ»)π₯))})β©) sSet β¨(LineGβndx),
(π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ (π§ β (π₯(ItvβπΊ)π¦) β¨ π₯ β (π§(ItvβπΊ)π¦) β¨ π¦ β (π₯(ItvβπΊ)π§))})β©)) |
6 | 3, 5 | eqtri 2760 |
. . 3
β’ (πΈβπ») = (πΈβ((π» sSet β¨(Itvβndx), (π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ βπ β (0[,]1)(π§(-gβπ»)π₯) = (π( Β·π
βπ»)(π¦(-gβπ»)π₯))})β©) sSet β¨(LineGβndx),
(π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ (π§ β (π₯(ItvβπΊ)π¦) β¨ π₯ β (π§(ItvβπΊ)π¦) β¨ π¦ β (π₯(ItvβπΊ)π§))})β©)) |
7 | | ttgval.n |
. . . . . 6
β’ πΊ = (toTGβπ») |
8 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ») =
(Baseβπ») |
9 | | eqid 2732 |
. . . . . 6
β’
(-gβπ») = (-gβπ») |
10 | | eqid 2732 |
. . . . . 6
β’ (
Β·π βπ») = ( Β·π
βπ») |
11 | | eqid 2732 |
. . . . . 6
β’
(ItvβπΊ) =
(ItvβπΊ) |
12 | 7, 8, 9, 10, 11 | ttgval 28381 |
. . . . 5
β’ (π» β V β (πΊ = ((π» sSet β¨(Itvβndx), (π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ βπ β (0[,]1)(π§(-gβπ»)π₯) = (π( Β·π
βπ»)(π¦(-gβπ»)π₯))})β©) sSet β¨(LineGβndx),
(π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ (π§ β (π₯(ItvβπΊ)π¦) β¨ π₯ β (π§(ItvβπΊ)π¦) β¨ π¦ β (π₯(ItvβπΊ)π§))})β©) β§ (ItvβπΊ) = (π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ βπ β (0[,]1)(π§(-gβπ»)π₯) = (π( Β·π
βπ»)(π¦(-gβπ»)π₯))}))) |
13 | 12 | simpld 495 |
. . . 4
β’ (π» β V β πΊ = ((π» sSet β¨(Itvβndx), (π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ βπ β (0[,]1)(π§(-gβπ»)π₯) = (π( Β·π
βπ»)(π¦(-gβπ»)π₯))})β©) sSet β¨(LineGβndx),
(π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ (π§ β (π₯(ItvβπΊ)π¦) β¨ π₯ β (π§(ItvβπΊ)π¦) β¨ π¦ β (π₯(ItvβπΊ)π§))})β©)) |
14 | 13 | fveq2d 6895 |
. . 3
β’ (π» β V β (πΈβπΊ) = (πΈβ((π» sSet β¨(Itvβndx), (π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ βπ β (0[,]1)(π§(-gβπ»)π₯) = (π( Β·π
βπ»)(π¦(-gβπ»)π₯))})β©) sSet β¨(LineGβndx),
(π₯ β (Baseβπ»), π¦ β (Baseβπ») β¦ {π§ β (Baseβπ») β£ (π§ β (π₯(ItvβπΊ)π¦) β¨ π₯ β (π§(ItvβπΊ)π¦) β¨ π¦ β (π₯(ItvβπΊ)π§))})β©))) |
15 | 6, 14 | eqtr4id 2791 |
. 2
β’ (π» β V β (πΈβπ») = (πΈβπΊ)) |
16 | 1 | str0 17126 |
. . . 4
β’ β
=
(πΈββ
) |
17 | 16 | eqcomi 2741 |
. . 3
β’ (πΈββ
) =
β
|
18 | 17, 7 | fveqprc 17128 |
. 2
β’ (Β¬
π» β V β (πΈβπ») = (πΈβπΊ)) |
19 | 15, 18 | pm2.61i 182 |
1
β’ (πΈβπ») = (πΈβπΊ) |