| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttglem | Structured version Visualization version GIF version | ||
| Description: Lemma for ttgbas 28822, ttgvsca 28825 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
| ttglem.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| ttglem.l | ⊢ (𝐸‘ndx) ≠ (LineG‘ndx) |
| ttglem.i | ⊢ (𝐸‘ndx) ≠ (Itv‘ndx) |
| Ref | Expression |
|---|---|
| ttglem | ⊢ (𝐸‘𝐻) = (𝐸‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttglem.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | ttglem.i | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Itv‘ndx) | |
| 3 | 1, 2 | setsnid 17119 | . . . 4 ⊢ (𝐸‘𝐻) = (𝐸‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉)) |
| 4 | ttglem.l | . . . . 5 ⊢ (𝐸‘ndx) ≠ (LineG‘ndx) | |
| 5 | 1, 4 | setsnid 17119 | . . . 4 ⊢ (𝐸‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉)) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 6 | 3, 5 | eqtri 2752 | . . 3 ⊢ (𝐸‘𝐻) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 7 | ttgval.n | . . . . . 6 ⊢ 𝐺 = (toTG‘𝐻) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘𝐻) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
| 12 | 7, 8, 9, 10, 11 | ttgval 28820 | . . . . 5 ⊢ (𝐻 ∈ V → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))}))) |
| 13 | 12 | simpld 494 | . . . 4 ⊢ (𝐻 ∈ V → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 14 | 13 | fveq2d 6826 | . . 3 ⊢ (𝐻 ∈ V → (𝐸‘𝐺) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠 ‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉))) |
| 15 | 6, 14 | eqtr4id 2783 | . 2 ⊢ (𝐻 ∈ V → (𝐸‘𝐻) = (𝐸‘𝐺)) |
| 16 | 1 | str0 17100 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 17 | 16 | eqcomi 2738 | . . 3 ⊢ (𝐸‘∅) = ∅ |
| 18 | 17, 7 | fveqprc 17102 | . 2 ⊢ (¬ 𝐻 ∈ V → (𝐸‘𝐻) = (𝐸‘𝐺)) |
| 19 | 15, 18 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐻) = (𝐸‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3394 Vcvv 3436 ∅c0 4284 〈cop 4583 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 0cc0 11009 1c1 11010 [,]cicc 13251 sSet csts 17074 Slot cslot 17092 ndxcnx 17104 Basecbs 17120 ·𝑠 cvsca 17165 -gcsg 18814 Itvcitv 28378 LineGclng 28379 toTGcttg 28818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-dec 12592 df-sets 17075 df-slot 17093 df-ndx 17105 df-itv 28380 df-lng 28381 df-ttg 28819 |
| This theorem is referenced by: ttgbas 28822 ttgplusg 28823 ttgvsca 28825 ttgds 28826 |
| Copyright terms: Public domain | W3C validator |