MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttglem Structured version   Visualization version   GIF version

Theorem ttglem 28804
Description: Lemma for ttgbas 28806, ttgvsca 28811 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttglem.e 𝐸 = Slot (𝐸‘ndx)
ttglem.l (𝐸‘ndx) ≠ (LineG‘ndx)
ttglem.i (𝐸‘ndx) ≠ (Itv‘ndx)
Assertion
Ref Expression
ttglem (𝐸𝐻) = (𝐸𝐺)

Proof of Theorem ttglem
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttglem.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 ttglem.i . . . . 5 (𝐸‘ndx) ≠ (Itv‘ndx)
31, 2setsnid 17211 . . . 4 (𝐸𝐻) = (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩))
4 ttglem.l . . . . 5 (𝐸‘ndx) ≠ (LineG‘ndx)
51, 4setsnid 17211 . . . 4 (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩)) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
63, 5eqtri 2754 . . 3 (𝐸𝐻) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
7 ttgval.n . . . . . 6 𝐺 = (toTG‘𝐻)
8 eqid 2726 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
9 eqid 2726 . . . . . 6 (-g𝐻) = (-g𝐻)
10 eqid 2726 . . . . . 6 ( ·𝑠𝐻) = ( ·𝑠𝐻)
11 eqid 2726 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
127, 8, 9, 10, 11ttgval 28802 . . . . 5 (𝐻 ∈ V → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})))
1312simpld 493 . . . 4 (𝐻 ∈ V → 𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
1413fveq2d 6905 . . 3 (𝐻 ∈ V → (𝐸𝐺) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩)))
156, 14eqtr4id 2785 . 2 (𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
161str0 17191 . . . 4 ∅ = (𝐸‘∅)
1716eqcomi 2735 . . 3 (𝐸‘∅) = ∅
1817, 7fveqprc 17193 . 2 𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
1915, 18pm2.61i 182 1 (𝐸𝐻) = (𝐸𝐺)
Colors of variables: wff setvar class
Syntax hints:  w3o 1083   = wceq 1534  wcel 2099  wne 2930  wrex 3060  {crab 3419  Vcvv 3462  c0 4325  cop 4639  cfv 6554  (class class class)co 7424  cmpo 7426  0cc0 11158  1c1 11159  [,]cicc 13381   sSet csts 17165  Slot cslot 17183  ndxcnx 17195  Basecbs 17213   ·𝑠 cvsca 17270  -gcsg 18930  Itvcitv 28360  LineGclng 28361  toTGcttg 28800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-dec 12730  df-sets 17166  df-slot 17184  df-ndx 17196  df-itv 28362  df-lng 28363  df-ttg 28801
This theorem is referenced by:  ttgbas  28806  ttgplusg  28808  ttgvsca  28811  ttgds  28813
  Copyright terms: Public domain W3C validator