MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchen2 Structured version   Visualization version   GIF version

Theorem gchen2 10648
Description: If 𝐴 < 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchen2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴)

Proof of Theorem gchen2
StepHypRef Expression
1 simprr 772 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴)
2 gchi 10646 . . . . . 6 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
323expia 1121 . . . . 5 ((𝐴 ∈ GCH ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
43con3dimp 408 . . . 4 (((𝐴 ∈ GCH ∧ 𝐴𝐵) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐵 ≺ 𝒫 𝐴)
54an32s 652 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴𝐵) → ¬ 𝐵 ≺ 𝒫 𝐴)
65adantrr 717 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → ¬ 𝐵 ≺ 𝒫 𝐴)
7 bren2 9005 . 2 (𝐵 ≈ 𝒫 𝐴 ↔ (𝐵 ≼ 𝒫 𝐴 ∧ ¬ 𝐵 ≺ 𝒫 𝐴))
81, 6, 7sylanbrc 583 1 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2107  𝒫 cpw 4580   class class class wbr 5123  cen 8964  cdom 8965  csdm 8966  Fincfn 8967  GCHcgch 10642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-f1o 6548  df-en 8968  df-dom 8969  df-sdom 8970  df-gch 10643
This theorem is referenced by:  gchhar  10701
  Copyright terms: Public domain W3C validator