Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gchen2 | Structured version Visualization version GIF version |
Description: If 𝐴 < 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchen2 | ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 769 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴) | |
2 | gchi 10311 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
3 | 2 | 3expia 1119 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵) → (𝐵 ≺ 𝒫 𝐴 → 𝐴 ∈ Fin)) |
4 | 3 | con3dimp 408 | . . . 4 ⊢ (((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐵 ≺ 𝒫 𝐴) |
5 | 4 | an32s 648 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴 ≺ 𝐵) → ¬ 𝐵 ≺ 𝒫 𝐴) |
6 | 5 | adantrr 713 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → ¬ 𝐵 ≺ 𝒫 𝐴) |
7 | bren2 8726 | . 2 ⊢ (𝐵 ≈ 𝒫 𝐴 ↔ (𝐵 ≼ 𝒫 𝐴 ∧ ¬ 𝐵 ≺ 𝒫 𝐴)) | |
8 | 1, 6, 7 | sylanbrc 582 | 1 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4530 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 Fincfn 8691 GCHcgch 10307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-f1o 6425 df-en 8692 df-dom 8693 df-sdom 8694 df-gch 10308 |
This theorem is referenced by: gchhar 10366 |
Copyright terms: Public domain | W3C validator |