![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchen2 | Structured version Visualization version GIF version |
Description: If 𝐴 < 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchen2 | ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴) | |
2 | gchi 10693 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
3 | 2 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵) → (𝐵 ≺ 𝒫 𝐴 → 𝐴 ∈ Fin)) |
4 | 3 | con3dimp 408 | . . . 4 ⊢ (((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐵 ≺ 𝒫 𝐴) |
5 | 4 | an32s 651 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴 ≺ 𝐵) → ¬ 𝐵 ≺ 𝒫 𝐴) |
6 | 5 | adantrr 716 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → ¬ 𝐵 ≺ 𝒫 𝐴) |
7 | bren2 9043 | . 2 ⊢ (𝐵 ≈ 𝒫 𝐴 ↔ (𝐵 ≼ 𝒫 𝐴 ∧ ¬ 𝐵 ≺ 𝒫 𝐴)) | |
8 | 1, 6, 7 | sylanbrc 582 | 1 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4622 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 Fincfn 9003 GCHcgch 10689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-f1o 6580 df-en 9004 df-dom 9005 df-sdom 9006 df-gch 10690 |
This theorem is referenced by: gchhar 10748 |
Copyright terms: Public domain | W3C validator |