|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > gchen2 | Structured version Visualization version GIF version | ||
| Description: If 𝐴 < 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) | 
| Ref | Expression | 
|---|---|
| gchen2 | ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴) | |
| 2 | gchi 10665 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
| 3 | 2 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵) → (𝐵 ≺ 𝒫 𝐴 → 𝐴 ∈ Fin)) | 
| 4 | 3 | con3dimp 408 | . . . 4 ⊢ (((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐵 ≺ 𝒫 𝐴) | 
| 5 | 4 | an32s 652 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴 ≺ 𝐵) → ¬ 𝐵 ≺ 𝒫 𝐴) | 
| 6 | 5 | adantrr 717 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → ¬ 𝐵 ≺ 𝒫 𝐴) | 
| 7 | bren2 9024 | . 2 ⊢ (𝐵 ≈ 𝒫 𝐴 ↔ (𝐵 ≼ 𝒫 𝐴 ∧ ¬ 𝐵 ≺ 𝒫 𝐴)) | |
| 8 | 1, 6, 7 | sylanbrc 583 | 1 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 𝒫 cpw 4599 class class class wbr 5142 ≈ cen 8983 ≼ cdom 8984 ≺ csdm 8985 Fincfn 8986 GCHcgch 10661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-f1o 6567 df-en 8987 df-dom 8988 df-sdom 8989 df-gch 10662 | 
| This theorem is referenced by: gchhar 10720 | 
| Copyright terms: Public domain | W3C validator |