| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchen1 | Structured version Visualization version GIF version | ||
| Description: If 𝐴 ≤ 𝐵 < 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐴 = 𝐵 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| gchen1 | ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≼ 𝐵) | |
| 2 | gchi 10524 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
| 3 | 2 | 3com23 1126 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴 ∧ 𝐴 ≺ 𝐵) → 𝐴 ∈ Fin) |
| 4 | 3 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴) → (𝐴 ≺ 𝐵 → 𝐴 ∈ Fin)) |
| 5 | 4 | con3dimp 408 | . . . 4 ⊢ (((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ≺ 𝐵) |
| 6 | 5 | an32s 652 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≺ 𝒫 𝐴) → ¬ 𝐴 ≺ 𝐵) |
| 7 | 6 | adantrl 716 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → ¬ 𝐴 ≺ 𝐵) |
| 8 | bren2 8914 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) | |
| 9 | 1, 7, 8 | sylanbrc 583 | 1 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 𝒫 cpw 4551 class class class wbr 5095 ≈ cen 8874 ≼ cdom 8875 ≺ csdm 8876 Fincfn 8877 GCHcgch 10520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-f1o 6495 df-en 8878 df-dom 8879 df-sdom 8880 df-gch 10521 |
| This theorem is referenced by: gchor 10527 gchdju1 10556 gchdjuidm 10568 gchxpidm 10569 gchhar 10579 |
| Copyright terms: Public domain | W3C validator |