| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchen1 | Structured version Visualization version GIF version | ||
| Description: If 𝐴 ≤ 𝐵 < 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐴 = 𝐵 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| gchen1 | ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 771 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≼ 𝐵) | |
| 2 | gchi 10664 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
| 3 | 2 | 3com23 1127 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴 ∧ 𝐴 ≺ 𝐵) → 𝐴 ∈ Fin) |
| 4 | 3 | 3expia 1122 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴) → (𝐴 ≺ 𝐵 → 𝐴 ∈ Fin)) |
| 5 | 4 | con3dimp 408 | . . . 4 ⊢ (((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ≺ 𝐵) |
| 6 | 5 | an32s 652 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≺ 𝒫 𝐴) → ¬ 𝐴 ≺ 𝐵) |
| 7 | 6 | adantrl 716 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → ¬ 𝐴 ≺ 𝐵) |
| 8 | bren2 9023 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) | |
| 9 | 1, 7, 8 | sylanbrc 583 | 1 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4600 class class class wbr 5143 ≈ cen 8982 ≼ cdom 8983 ≺ csdm 8984 Fincfn 8985 GCHcgch 10660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-f1o 6568 df-en 8986 df-dom 8987 df-sdom 8988 df-gch 10661 |
| This theorem is referenced by: gchor 10667 gchdju1 10696 gchdjuidm 10708 gchxpidm 10709 gchhar 10719 |
| Copyright terms: Public domain | W3C validator |