Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gchen1 | Structured version Visualization version GIF version |
Description: If 𝐴 ≤ 𝐵 < 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐴 = 𝐵 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchen1 | ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 771 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≼ 𝐵) | |
2 | gchi 10085 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
3 | 2 | 3com23 1124 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴 ∧ 𝐴 ≺ 𝐵) → 𝐴 ∈ Fin) |
4 | 3 | 3expia 1119 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴) → (𝐴 ≺ 𝐵 → 𝐴 ∈ Fin)) |
5 | 4 | con3dimp 413 | . . . 4 ⊢ (((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ≺ 𝐵) |
6 | 5 | an32s 652 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≺ 𝒫 𝐴) → ¬ 𝐴 ≺ 𝐵) |
7 | 6 | adantrl 716 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → ¬ 𝐴 ≺ 𝐵) |
8 | bren2 8559 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) | |
9 | 1, 7, 8 | sylanbrc 587 | 1 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 ∈ wcel 2112 𝒫 cpw 4495 class class class wbr 5033 ≈ cen 8525 ≼ cdom 8526 ≺ csdm 8527 Fincfn 8528 GCHcgch 10081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-f1o 6343 df-en 8529 df-dom 8530 df-sdom 8531 df-gch 10082 |
This theorem is referenced by: gchor 10088 gchdju1 10117 gchdjuidm 10129 gchxpidm 10130 gchhar 10140 |
Copyright terms: Public domain | W3C validator |