MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchen1 Structured version   Visualization version   GIF version

Theorem gchen1 10694
Description: If 𝐴𝐵 < 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐴 = 𝐵 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchen1 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)) → 𝐴𝐵)

Proof of Theorem gchen1
StepHypRef Expression
1 simprl 770 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)) → 𝐴𝐵)
2 gchi 10693 . . . . . . 7 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
323com23 1126 . . . . . 6 ((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴𝐴𝐵) → 𝐴 ∈ Fin)
433expia 1121 . . . . 5 ((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴) → (𝐴𝐵𝐴 ∈ Fin))
54con3dimp 408 . . . 4 (((𝐴 ∈ GCH ∧ 𝐵 ≺ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴𝐵)
65an32s 651 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≺ 𝒫 𝐴) → ¬ 𝐴𝐵)
76adantrl 715 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)) → ¬ 𝐴𝐵)
8 bren2 9043 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
91, 7, 8sylanbrc 582 1 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  𝒫 cpw 4622   class class class wbr 5166  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  GCHcgch 10689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-f1o 6580  df-en 9004  df-dom 9005  df-sdom 9006  df-gch 10690
This theorem is referenced by:  gchor  10696  gchdju1  10725  gchdjuidm  10737  gchxpidm  10738  gchhar  10748
  Copyright terms: Public domain W3C validator