Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bren2 | Structured version Visualization version GIF version |
Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
bren2 | ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8722 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | sdomnen 8724 | . . . 4 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
3 | 2 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐴 ≺ 𝐵) |
4 | 1, 3 | jca 511 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
5 | brdom2 8725 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
6 | 5 | biimpi 215 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
7 | 6 | orcanai 999 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵) → 𝐴 ≈ 𝐵) |
8 | 4, 7 | impbii 208 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-f1o 6425 df-en 8692 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: marypha1lem 9122 tskwe 9639 infxpenlem 9700 cdainflem 9874 axcclem 10144 alephsuc3 10267 gchen1 10312 gchen2 10313 inatsk 10465 ufilen 22989 dirith2 26581 f1ocnt 31025 lindsenlbs 35699 mblfinlem1 35741 axccdom 42651 axccd2 42658 |
Copyright terms: Public domain | W3C validator |