MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bren2 Structured version   Visualization version   GIF version

Theorem bren2 9043
Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
bren2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))

Proof of Theorem bren2
StepHypRef Expression
1 endom 9039 . . 3 (𝐴𝐵𝐴𝐵)
2 sdomnen 9041 . . . 4 (𝐴𝐵 → ¬ 𝐴𝐵)
32con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐴𝐵)
41, 3jca 511 . 2 (𝐴𝐵 → (𝐴𝐵 ∧ ¬ 𝐴𝐵))
5 brdom2 9042 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
65biimpi 216 . . 3 (𝐴𝐵 → (𝐴𝐵𝐴𝐵))
76orcanai 1003 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846   class class class wbr 5166  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-f1o 6580  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  marypha1lem  9502  tskwe  10019  infxpenlem  10082  cdainflem  10257  axcclem  10526  alephsuc3  10649  gchen1  10694  gchen2  10695  inatsk  10847  ufilen  23959  dirith2  27590  f1ocnt  32807  lindsenlbs  37575  mblfinlem1  37617  axccdom  45129  axccd2  45137
  Copyright terms: Public domain W3C validator