MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bren2 Structured version   Visualization version   GIF version

Theorem bren2 8822
Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
bren2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))

Proof of Theorem bren2
StepHypRef Expression
1 endom 8818 . . 3 (𝐴𝐵𝐴𝐵)
2 sdomnen 8820 . . . 4 (𝐴𝐵 → ¬ 𝐴𝐵)
32con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐴𝐵)
41, 3jca 512 . 2 (𝐴𝐵 → (𝐴𝐵 ∧ ¬ 𝐴𝐵))
5 brdom2 8821 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
65biimpi 215 . . 3 (𝐴𝐵 → (𝐴𝐵𝐴𝐵))
76orcanai 1000 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) → 𝐴𝐵)
84, 7impbii 208 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844   class class class wbr 5086  cen 8779  cdom 8780  csdm 8781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5087  df-opab 5149  df-xp 5613  df-rel 5614  df-f1o 6472  df-en 8783  df-dom 8784  df-sdom 8785
This theorem is referenced by:  marypha1lem  9268  tskwe  9785  infxpenlem  9848  cdainflem  10022  axcclem  10292  alephsuc3  10415  gchen1  10460  gchen2  10461  inatsk  10613  ufilen  23161  dirith2  26756  f1ocnt  31254  lindsenlbs  35849  mblfinlem1  35891  axccdom  43008  axccd2  43016
  Copyright terms: Public domain W3C validator