MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bren2 Structured version   Visualization version   GIF version

Theorem bren2 8915
Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
bren2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))

Proof of Theorem bren2
StepHypRef Expression
1 endom 8911 . . 3 (𝐴𝐵𝐴𝐵)
2 sdomnen 8913 . . . 4 (𝐴𝐵 → ¬ 𝐴𝐵)
32con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐴𝐵)
41, 3jca 511 . 2 (𝐴𝐵 → (𝐴𝐵 ∧ ¬ 𝐴𝐵))
5 brdom2 8914 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
65biimpi 216 . . 3 (𝐴𝐵 → (𝐴𝐵𝐴𝐵))
76orcanai 1004 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   class class class wbr 5095  cen 8876  cdom 8877  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-f1o 6493  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  marypha1lem  9342  tskwe  9865  infxpenlem  9926  cdainflem  10101  axcclem  10370  alephsuc3  10493  gchen1  10538  gchen2  10539  inatsk  10691  ufilen  23833  dirith2  27455  f1ocnt  32758  lindsenlbs  37594  mblfinlem1  37636  axccdom  45200  axccd2  45208
  Copyright terms: Public domain W3C validator