| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren2 | Structured version Visualization version GIF version | ||
| Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| bren2 | ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8901 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | sdomnen 8903 | . . . 4 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
| 3 | 2 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐴 ≺ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| 5 | brdom2 8904 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
| 7 | 6 | orcanai 1004 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵) → 𝐴 ≈ 𝐵) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 class class class wbr 5091 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-f1o 6488 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: marypha1lem 9317 tskwe 9840 infxpenlem 9901 cdainflem 10076 axcclem 10345 alephsuc3 10468 gchen1 10513 gchen2 10514 inatsk 10666 ufilen 23843 dirith2 27464 f1ocnt 32777 lindsenlbs 37654 mblfinlem1 37696 axccdom 45258 axccd2 45266 |
| Copyright terms: Public domain | W3C validator |