| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren2 | Structured version Visualization version GIF version | ||
| Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| bren2 | ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8908 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | sdomnen 8910 | . . . 4 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
| 3 | 2 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐴 ≺ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| 5 | brdom2 8911 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
| 7 | 6 | orcanai 1004 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵) → 𝐴 ≈ 𝐵) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 class class class wbr 5093 ≈ cen 8872 ≼ cdom 8873 ≺ csdm 8874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-br 5094 df-opab 5156 df-f1o 6493 df-en 8876 df-dom 8877 df-sdom 8878 |
| This theorem is referenced by: marypha1lem 9324 tskwe 9850 infxpenlem 9911 cdainflem 10086 axcclem 10355 alephsuc3 10478 gchen1 10523 gchen2 10524 inatsk 10676 ufilen 23846 dirith2 27467 f1ocnt 32787 lindsenlbs 37675 mblfinlem1 37717 axccdom 45343 axccd2 45351 |
| Copyright terms: Public domain | W3C validator |