Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bren2 | Structured version Visualization version GIF version |
Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
bren2 | ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8818 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | sdomnen 8820 | . . . 4 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
3 | 2 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐴 ≺ 𝐵) |
4 | 1, 3 | jca 512 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
5 | brdom2 8821 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
6 | 5 | biimpi 215 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
7 | 6 | orcanai 1000 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵) → 𝐴 ≈ 𝐵) |
8 | 4, 7 | impbii 208 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 class class class wbr 5086 ≈ cen 8779 ≼ cdom 8780 ≺ csdm 8781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-xp 5613 df-rel 5614 df-f1o 6472 df-en 8783 df-dom 8784 df-sdom 8785 |
This theorem is referenced by: marypha1lem 9268 tskwe 9785 infxpenlem 9848 cdainflem 10022 axcclem 10292 alephsuc3 10415 gchen1 10460 gchen2 10461 inatsk 10613 ufilen 23161 dirith2 26756 f1ocnt 31254 lindsenlbs 35849 mblfinlem1 35891 axccdom 43008 axccd2 43016 |
Copyright terms: Public domain | W3C validator |