MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bren2 Structured version   Visualization version   GIF version

Theorem bren2 8905
Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
bren2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))

Proof of Theorem bren2
StepHypRef Expression
1 endom 8901 . . 3 (𝐴𝐵𝐴𝐵)
2 sdomnen 8903 . . . 4 (𝐴𝐵 → ¬ 𝐴𝐵)
32con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐴𝐵)
41, 3jca 511 . 2 (𝐴𝐵 → (𝐴𝐵 ∧ ¬ 𝐴𝐵))
5 brdom2 8904 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
65biimpi 216 . . 3 (𝐴𝐵 → (𝐴𝐵𝐴𝐵))
76orcanai 1004 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) → 𝐴𝐵)
84, 7impbii 209 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   class class class wbr 5091  cen 8866  cdom 8867  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-f1o 6488  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by:  marypha1lem  9317  tskwe  9840  infxpenlem  9901  cdainflem  10076  axcclem  10345  alephsuc3  10468  gchen1  10513  gchen2  10514  inatsk  10666  ufilen  23843  dirith2  27464  f1ocnt  32777  lindsenlbs  37654  mblfinlem1  37696  axccdom  45258  axccd2  45266
  Copyright terms: Public domain W3C validator