| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bren2 | Structured version Visualization version GIF version | ||
| Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| bren2 | ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8911 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | sdomnen 8913 | . . . 4 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
| 3 | 2 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐴 ≺ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| 5 | brdom2 8914 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
| 7 | 6 | orcanai 1004 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵) → 𝐴 ≈ 𝐵) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 class class class wbr 5095 ≈ cen 8876 ≼ cdom 8877 ≺ csdm 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-f1o 6493 df-en 8880 df-dom 8881 df-sdom 8882 |
| This theorem is referenced by: marypha1lem 9342 tskwe 9865 infxpenlem 9926 cdainflem 10101 axcclem 10370 alephsuc3 10493 gchen1 10538 gchen2 10539 inatsk 10691 ufilen 23833 dirith2 27455 f1ocnt 32758 lindsenlbs 37594 mblfinlem1 37636 axccdom 45200 axccd2 45208 |
| Copyright terms: Public domain | W3C validator |