MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchhar Structured version   Visualization version   GIF version

Theorem gchhar 10722
Description: A "local" form of gchac 10724. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchhar ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)

Proof of Theorem gchhar
StepHypRef Expression
1 harcl 9602 . . . 4 (har‘𝐴) ∈ On
2 simp3 1135 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ GCH)
3 djudoml 10227 . . . 4 (((har‘𝐴) ∈ On ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴))
41, 2, 3sylancr 585 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴))
5 domnsym 9137 . . . . . . . . 9 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
653ad2ant1 1130 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≺ ω)
7 isfinite 9695 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
86, 7sylnibr 328 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ∈ Fin)
9 pwfi 9359 . . . . . . 7 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
108, 9sylnib 327 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝒫 𝐴 ∈ Fin)
11 djudoml 10227 . . . . . . 7 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
122, 1, 11sylancl 584 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
13 fvexd 6916 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ∈ V)
14 djuex 9951 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ V) → (𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V)
152, 13, 14syl2anc 582 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V)
16 canth2g 9169 . . . . . . . 8 ((𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)))
1715, 16syl 17 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)))
18 pwdjuen 10224 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
192, 1, 18sylancl 584 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
202pwexd 5383 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝒫 𝐴 ∈ V)
21 simp2 1134 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ∈ GCH)
22 harwdom 9634 . . . . . . . . . . 11 (𝐴 ∈ GCH → (har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴))
23 wdompwdom 9621 . . . . . . . . . . 11 ((har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
2421, 22, 233syl 18 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
25 xpdom2g 9106 . . . . . . . . . 10 ((𝒫 𝒫 𝐴 ∈ V ∧ 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴)) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2620, 24, 25syl2anc 582 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2721, 21xpexd 7759 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ∈ V)
2827pwexd 5383 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ∈ V)
29 pwdjuen 10224 . . . . . . . . . . . 12 ((𝒫 𝐴 ∈ GCH ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
302, 28, 29syl2anc 582 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
3130ensymd 9036 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)))
32 enrefg 9015 . . . . . . . . . . . . . 14 (𝒫 𝐴 ∈ GCH → 𝒫 𝐴 ≈ 𝒫 𝐴)
332, 32syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ 𝒫 𝐴)
34 gchxpidm 10712 . . . . . . . . . . . . . . 15 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
3521, 8, 34syl2anc 582 . . . . . . . . . . . . . 14 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ≈ 𝐴)
36 pwen 9188 . . . . . . . . . . . . . 14 ((𝐴 × 𝐴) ≈ 𝐴 → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
3735, 36syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
38 djuen 10212 . . . . . . . . . . . . 13 ((𝒫 𝐴 ≈ 𝒫 𝐴 ∧ 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
3933, 37, 38syl2anc 582 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
40 gchdjuidm 10711 . . . . . . . . . . . . 13 ((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
412, 10, 40syl2anc 582 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
42 entr 9037 . . . . . . . . . . . 12 (((𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
4339, 41, 42syl2anc 582 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
44 pwen 9188 . . . . . . . . . . 11 ((𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴 → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4543, 44syl 17 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
46 entr 9037 . . . . . . . . . 10 (((𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ∧ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4731, 45, 46syl2anc 582 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
48 domentr 9044 . . . . . . . . 9 (((𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
4926, 47, 48syl2anc 582 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
50 endomtr 9043 . . . . . . . 8 ((𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
5119, 49, 50syl2anc 582 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
52 sdomdomtr 9148 . . . . . . 7 (((𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
5317, 51, 52syl2anc 582 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
54 gchen1 10668 . . . . . 6 (((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) ∧ (𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)) → 𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)))
552, 10, 12, 53, 54syl22anc 837 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)))
56 djucomen 10220 . . . . . 6 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ V) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
572, 13, 56syl2anc 582 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
58 entr 9037 . . . . 5 ((𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴)) → 𝒫 𝐴 ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
5955, 57, 58syl2anc 582 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
6059ensymd 9036 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
61 domentr 9044 . . 3 (((har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴) ∧ ((har‘𝐴) ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (har‘𝐴) ≼ 𝒫 𝐴)
624, 60, 61syl2anc 582 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ 𝒫 𝐴)
63 gchdjuidm 10711 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
6421, 8, 63syl2anc 582 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴𝐴) ≈ 𝐴)
65 pwen 9188 . . . . 5 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
6664, 65syl 17 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
67 djudoml 10227 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝐴 ≼ (𝐴 ⊔ (har‘𝐴)))
6821, 1, 67sylancl 584 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴 ⊔ (har‘𝐴)))
69 harndom 9605 . . . . . . . 8 ¬ (har‘𝐴) ≼ 𝐴
70 djudoml 10227 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴))
711, 21, 70sylancr 585 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴))
72 djucomen 10220 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
731, 21, 72sylancr 585 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
74 domentr 9044 . . . . . . . . . 10 (((har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴) ∧ ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴))) → (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
7571, 73, 74syl2anc 582 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
76 domen2 9158 . . . . . . . . 9 (𝐴 ≈ (𝐴 ⊔ (har‘𝐴)) → ((har‘𝐴) ≼ 𝐴 ↔ (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴))))
7775, 76syl5ibrcom 246 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ≈ (𝐴 ⊔ (har‘𝐴)) → (har‘𝐴) ≼ 𝐴))
7869, 77mtoi 198 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≈ (𝐴 ⊔ (har‘𝐴)))
79 brsdom 9006 . . . . . . 7 (𝐴 ≺ (𝐴 ⊔ (har‘𝐴)) ↔ (𝐴 ≼ (𝐴 ⊔ (har‘𝐴)) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ (har‘𝐴))))
8068, 78, 79sylanbrc 581 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≺ (𝐴 ⊔ (har‘𝐴)))
81 canth2g 9169 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
82 sdomdom 9011 . . . . . . . . . 10 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
8321, 81, 823syl 18 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ 𝒫 𝐴)
84 djudom1 10225 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ (har‘𝐴) ∈ On) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
8583, 1, 84sylancl 584 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
86 djudom2 10226 . . . . . . . . 9 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
8762, 2, 86syl2anc 582 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
88 domtr 9038 . . . . . . . 8 (((𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
8985, 87, 88syl2anc 582 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
90 domentr 9044 . . . . . . 7 (((𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)
9189, 41, 90syl2anc 582 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)
92 gchen2 10669 . . . . . 6 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ (𝐴 ⊔ (har‘𝐴)) ∧ (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)) → (𝐴 ⊔ (har‘𝐴)) ≈ 𝒫 𝐴)
9321, 8, 80, 91, 92syl22anc 837 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≈ 𝒫 𝐴)
9493ensymd 9036 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝐴 ⊔ (har‘𝐴)))
95 entr 9037 . . . 4 ((𝒫 (𝐴𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (𝐴 ⊔ (har‘𝐴))) → 𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
9666, 94, 95syl2anc 582 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
97 endom 9010 . . 3 (𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)) → 𝒫 (𝐴𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
98 pwdjudom 10259 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴 ⊔ (har‘𝐴)) → 𝒫 𝐴 ≼ (har‘𝐴))
9996, 97, 983syl 18 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (har‘𝐴))
100 sbth 9131 . 2 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ (har‘𝐴)) → (har‘𝐴) ≈ 𝒫 𝐴)
10162, 99, 100syl2anc 582 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084  wcel 2099  Vcvv 3462  𝒫 cpw 4607   class class class wbr 5153   × cxp 5680  Oncon0 6376  cfv 6554  ωcom 7876  cen 8971  cdom 8972  csdm 8973  Fincfn 8974  harchar 9599  * cwdom 9607  cdju 9941  GCHcgch 10663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-seqom 8478  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-oexp 8502  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-oi 9553  df-har 9600  df-wdom 9608  df-cnf 9705  df-dju 9944  df-card 9982  df-fin4 10330  df-gch 10664
This theorem is referenced by:  gchacg  10723
  Copyright terms: Public domain W3C validator