MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchhar Structured version   Visualization version   GIF version

Theorem gchhar 10639
Description: A "local" form of gchac 10641. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchhar ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)

Proof of Theorem gchhar
StepHypRef Expression
1 harcl 9519 . . . 4 (har‘𝐴) ∈ On
2 simp3 1138 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ GCH)
3 djudoml 10145 . . . 4 (((har‘𝐴) ∈ On ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴))
41, 2, 3sylancr 587 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴))
5 domnsym 9073 . . . . . . . . 9 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
653ad2ant1 1133 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≺ ω)
7 isfinite 9612 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
86, 7sylnibr 329 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ∈ Fin)
9 pwfi 9275 . . . . . . 7 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
108, 9sylnib 328 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝒫 𝐴 ∈ Fin)
11 djudoml 10145 . . . . . . 7 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
122, 1, 11sylancl 586 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
13 fvexd 6876 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ∈ V)
14 djuex 9868 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ V) → (𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V)
152, 13, 14syl2anc 584 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V)
16 canth2g 9101 . . . . . . . 8 ((𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)))
1715, 16syl 17 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)))
18 pwdjuen 10142 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
192, 1, 18sylancl 586 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
202pwexd 5337 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝒫 𝐴 ∈ V)
21 simp2 1137 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ∈ GCH)
22 harwdom 9551 . . . . . . . . . . 11 (𝐴 ∈ GCH → (har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴))
23 wdompwdom 9538 . . . . . . . . . . 11 ((har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
2421, 22, 233syl 18 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
25 xpdom2g 9042 . . . . . . . . . 10 ((𝒫 𝒫 𝐴 ∈ V ∧ 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴)) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2620, 24, 25syl2anc 584 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2721, 21xpexd 7730 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ∈ V)
2827pwexd 5337 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ∈ V)
29 pwdjuen 10142 . . . . . . . . . . . 12 ((𝒫 𝐴 ∈ GCH ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
302, 28, 29syl2anc 584 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
3130ensymd 8979 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)))
32 enrefg 8958 . . . . . . . . . . . . . 14 (𝒫 𝐴 ∈ GCH → 𝒫 𝐴 ≈ 𝒫 𝐴)
332, 32syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ 𝒫 𝐴)
34 gchxpidm 10629 . . . . . . . . . . . . . . 15 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
3521, 8, 34syl2anc 584 . . . . . . . . . . . . . 14 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ≈ 𝐴)
36 pwen 9120 . . . . . . . . . . . . . 14 ((𝐴 × 𝐴) ≈ 𝐴 → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
3735, 36syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
38 djuen 10130 . . . . . . . . . . . . 13 ((𝒫 𝐴 ≈ 𝒫 𝐴 ∧ 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
3933, 37, 38syl2anc 584 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
40 gchdjuidm 10628 . . . . . . . . . . . . 13 ((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
412, 10, 40syl2anc 584 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
42 entr 8980 . . . . . . . . . . . 12 (((𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
4339, 41, 42syl2anc 584 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
44 pwen 9120 . . . . . . . . . . 11 ((𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴 → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4543, 44syl 17 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
46 entr 8980 . . . . . . . . . 10 (((𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ∧ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4731, 45, 46syl2anc 584 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
48 domentr 8987 . . . . . . . . 9 (((𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
4926, 47, 48syl2anc 584 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
50 endomtr 8986 . . . . . . . 8 ((𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
5119, 49, 50syl2anc 584 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
52 sdomdomtr 9080 . . . . . . 7 (((𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
5317, 51, 52syl2anc 584 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
54 gchen1 10585 . . . . . 6 (((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) ∧ (𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)) → 𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)))
552, 10, 12, 53, 54syl22anc 838 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)))
56 djucomen 10138 . . . . . 6 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ V) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
572, 13, 56syl2anc 584 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
58 entr 8980 . . . . 5 ((𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴)) → 𝒫 𝐴 ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
5955, 57, 58syl2anc 584 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
6059ensymd 8979 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
61 domentr 8987 . . 3 (((har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴) ∧ ((har‘𝐴) ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (har‘𝐴) ≼ 𝒫 𝐴)
624, 60, 61syl2anc 584 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ 𝒫 𝐴)
63 gchdjuidm 10628 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
6421, 8, 63syl2anc 584 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴𝐴) ≈ 𝐴)
65 pwen 9120 . . . . 5 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
6664, 65syl 17 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
67 djudoml 10145 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝐴 ≼ (𝐴 ⊔ (har‘𝐴)))
6821, 1, 67sylancl 586 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴 ⊔ (har‘𝐴)))
69 harndom 9522 . . . . . . . 8 ¬ (har‘𝐴) ≼ 𝐴
70 djudoml 10145 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴))
711, 21, 70sylancr 587 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴))
72 djucomen 10138 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
731, 21, 72sylancr 587 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
74 domentr 8987 . . . . . . . . . 10 (((har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴) ∧ ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴))) → (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
7571, 73, 74syl2anc 584 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
76 domen2 9090 . . . . . . . . 9 (𝐴 ≈ (𝐴 ⊔ (har‘𝐴)) → ((har‘𝐴) ≼ 𝐴 ↔ (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴))))
7775, 76syl5ibrcom 247 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ≈ (𝐴 ⊔ (har‘𝐴)) → (har‘𝐴) ≼ 𝐴))
7869, 77mtoi 199 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≈ (𝐴 ⊔ (har‘𝐴)))
79 brsdom 8949 . . . . . . 7 (𝐴 ≺ (𝐴 ⊔ (har‘𝐴)) ↔ (𝐴 ≼ (𝐴 ⊔ (har‘𝐴)) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ (har‘𝐴))))
8068, 78, 79sylanbrc 583 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≺ (𝐴 ⊔ (har‘𝐴)))
81 canth2g 9101 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
82 sdomdom 8954 . . . . . . . . . 10 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
8321, 81, 823syl 18 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ 𝒫 𝐴)
84 djudom1 10143 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ (har‘𝐴) ∈ On) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
8583, 1, 84sylancl 586 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
86 djudom2 10144 . . . . . . . . 9 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
8762, 2, 86syl2anc 584 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
88 domtr 8981 . . . . . . . 8 (((𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
8985, 87, 88syl2anc 584 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
90 domentr 8987 . . . . . . 7 (((𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)
9189, 41, 90syl2anc 584 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)
92 gchen2 10586 . . . . . 6 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ (𝐴 ⊔ (har‘𝐴)) ∧ (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)) → (𝐴 ⊔ (har‘𝐴)) ≈ 𝒫 𝐴)
9321, 8, 80, 91, 92syl22anc 838 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≈ 𝒫 𝐴)
9493ensymd 8979 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝐴 ⊔ (har‘𝐴)))
95 entr 8980 . . . 4 ((𝒫 (𝐴𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (𝐴 ⊔ (har‘𝐴))) → 𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
9666, 94, 95syl2anc 584 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
97 endom 8953 . . 3 (𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)) → 𝒫 (𝐴𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
98 pwdjudom 10175 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴 ⊔ (har‘𝐴)) → 𝒫 𝐴 ≼ (har‘𝐴))
9996, 97, 983syl 18 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (har‘𝐴))
100 sbth 9067 . 2 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ (har‘𝐴)) → (har‘𝐴) ≈ 𝒫 𝐴)
10162, 99, 100syl2anc 584 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086  wcel 2109  Vcvv 3450  𝒫 cpw 4566   class class class wbr 5110   × cxp 5639  Oncon0 6335  cfv 6514  ωcom 7845  cen 8918  cdom 8919  csdm 8920  Fincfn 8921  harchar 9516  * cwdom 9524  cdju 9858  GCHcgch 10580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-har 9517  df-wdom 9525  df-cnf 9622  df-dju 9861  df-card 9899  df-fin4 10247  df-gch 10581
This theorem is referenced by:  gchacg  10640
  Copyright terms: Public domain W3C validator