MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchhar Structured version   Visualization version   GIF version

Theorem gchhar 10293
Description: A "local" form of gchac 10295. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchhar ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)

Proof of Theorem gchhar
StepHypRef Expression
1 harcl 9175 . . . 4 (har‘𝐴) ∈ On
2 simp3 1140 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ GCH)
3 djudoml 9798 . . . 4 (((har‘𝐴) ∈ On ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴))
41, 2, 3sylancr 590 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴))
5 domnsym 8772 . . . . . . . . 9 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
653ad2ant1 1135 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≺ ω)
7 isfinite 9267 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
86, 7sylnibr 332 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ∈ Fin)
9 pwfi 8856 . . . . . . 7 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
108, 9sylnib 331 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝒫 𝐴 ∈ Fin)
11 djudoml 9798 . . . . . . 7 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
122, 1, 11sylancl 589 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
13 fvexd 6732 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ∈ V)
14 djuex 9524 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ V) → (𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V)
152, 13, 14syl2anc 587 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V)
16 canth2g 8800 . . . . . . . 8 ((𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)))
1715, 16syl 17 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)))
18 pwdjuen 9795 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
192, 1, 18sylancl 589 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
202pwexd 5272 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝒫 𝐴 ∈ V)
21 simp2 1139 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ∈ GCH)
22 harwdom 9207 . . . . . . . . . . 11 (𝐴 ∈ GCH → (har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴))
23 wdompwdom 9194 . . . . . . . . . . 11 ((har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
2421, 22, 233syl 18 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
25 xpdom2g 8741 . . . . . . . . . 10 ((𝒫 𝒫 𝐴 ∈ V ∧ 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴)) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2620, 24, 25syl2anc 587 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2721, 21xpexd 7536 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ∈ V)
2827pwexd 5272 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ∈ V)
29 pwdjuen 9795 . . . . . . . . . . . 12 ((𝒫 𝐴 ∈ GCH ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
302, 28, 29syl2anc 587 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
3130ensymd 8679 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)))
32 enrefg 8660 . . . . . . . . . . . . . 14 (𝒫 𝐴 ∈ GCH → 𝒫 𝐴 ≈ 𝒫 𝐴)
332, 32syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ 𝒫 𝐴)
34 gchxpidm 10283 . . . . . . . . . . . . . . 15 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
3521, 8, 34syl2anc 587 . . . . . . . . . . . . . 14 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ≈ 𝐴)
36 pwen 8819 . . . . . . . . . . . . . 14 ((𝐴 × 𝐴) ≈ 𝐴 → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
3735, 36syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
38 djuen 9783 . . . . . . . . . . . . 13 ((𝒫 𝐴 ≈ 𝒫 𝐴 ∧ 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
3933, 37, 38syl2anc 587 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
40 gchdjuidm 10282 . . . . . . . . . . . . 13 ((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
412, 10, 40syl2anc 587 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
42 entr 8680 . . . . . . . . . . . 12 (((𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
4339, 41, 42syl2anc 587 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
44 pwen 8819 . . . . . . . . . . 11 ((𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴 → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4543, 44syl 17 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
46 entr 8680 . . . . . . . . . 10 (((𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ∧ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4731, 45, 46syl2anc 587 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
48 domentr 8687 . . . . . . . . 9 (((𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
4926, 47, 48syl2anc 587 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
50 endomtr 8686 . . . . . . . 8 ((𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
5119, 49, 50syl2anc 587 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
52 sdomdomtr 8779 . . . . . . 7 (((𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
5317, 51, 52syl2anc 587 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
54 gchen1 10239 . . . . . 6 (((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) ∧ (𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)) → 𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)))
552, 10, 12, 53, 54syl22anc 839 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)))
56 djucomen 9791 . . . . . 6 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ V) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
572, 13, 56syl2anc 587 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
58 entr 8680 . . . . 5 ((𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴)) → 𝒫 𝐴 ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
5955, 57, 58syl2anc 587 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
6059ensymd 8679 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
61 domentr 8687 . . 3 (((har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴) ∧ ((har‘𝐴) ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (har‘𝐴) ≼ 𝒫 𝐴)
624, 60, 61syl2anc 587 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ 𝒫 𝐴)
63 gchdjuidm 10282 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
6421, 8, 63syl2anc 587 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴𝐴) ≈ 𝐴)
65 pwen 8819 . . . . 5 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
6664, 65syl 17 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
67 djudoml 9798 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝐴 ≼ (𝐴 ⊔ (har‘𝐴)))
6821, 1, 67sylancl 589 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴 ⊔ (har‘𝐴)))
69 harndom 9178 . . . . . . . 8 ¬ (har‘𝐴) ≼ 𝐴
70 djudoml 9798 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴))
711, 21, 70sylancr 590 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴))
72 djucomen 9791 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
731, 21, 72sylancr 590 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
74 domentr 8687 . . . . . . . . . 10 (((har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴) ∧ ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴))) → (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
7571, 73, 74syl2anc 587 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
76 domen2 8789 . . . . . . . . 9 (𝐴 ≈ (𝐴 ⊔ (har‘𝐴)) → ((har‘𝐴) ≼ 𝐴 ↔ (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴))))
7775, 76syl5ibrcom 250 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ≈ (𝐴 ⊔ (har‘𝐴)) → (har‘𝐴) ≼ 𝐴))
7869, 77mtoi 202 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≈ (𝐴 ⊔ (har‘𝐴)))
79 brsdom 8651 . . . . . . 7 (𝐴 ≺ (𝐴 ⊔ (har‘𝐴)) ↔ (𝐴 ≼ (𝐴 ⊔ (har‘𝐴)) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ (har‘𝐴))))
8068, 78, 79sylanbrc 586 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≺ (𝐴 ⊔ (har‘𝐴)))
81 canth2g 8800 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
82 sdomdom 8656 . . . . . . . . . 10 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
8321, 81, 823syl 18 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ 𝒫 𝐴)
84 djudom1 9796 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ (har‘𝐴) ∈ On) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
8583, 1, 84sylancl 589 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
86 djudom2 9797 . . . . . . . . 9 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
8762, 2, 86syl2anc 587 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
88 domtr 8681 . . . . . . . 8 (((𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
8985, 87, 88syl2anc 587 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
90 domentr 8687 . . . . . . 7 (((𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)
9189, 41, 90syl2anc 587 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)
92 gchen2 10240 . . . . . 6 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ (𝐴 ⊔ (har‘𝐴)) ∧ (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)) → (𝐴 ⊔ (har‘𝐴)) ≈ 𝒫 𝐴)
9321, 8, 80, 91, 92syl22anc 839 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≈ 𝒫 𝐴)
9493ensymd 8679 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝐴 ⊔ (har‘𝐴)))
95 entr 8680 . . . 4 ((𝒫 (𝐴𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (𝐴 ⊔ (har‘𝐴))) → 𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
9666, 94, 95syl2anc 587 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
97 endom 8655 . . 3 (𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)) → 𝒫 (𝐴𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
98 pwdjudom 9830 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴 ⊔ (har‘𝐴)) → 𝒫 𝐴 ≼ (har‘𝐴))
9996, 97, 983syl 18 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (har‘𝐴))
100 sbth 8766 . 2 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ (har‘𝐴)) → (har‘𝐴) ≈ 𝒫 𝐴)
10162, 99, 100syl2anc 587 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1089  wcel 2110  Vcvv 3408  𝒫 cpw 4513   class class class wbr 5053   × cxp 5549  Oncon0 6213  cfv 6380  ωcom 7644  cen 8623  cdom 8624  csdm 8625  Fincfn 8626  harchar 9172  * cwdom 9180  cdju 9514  GCHcgch 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-seqom 8184  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-oexp 8208  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-har 9173  df-wdom 9181  df-cnf 9277  df-dju 9517  df-card 9555  df-fin4 9901  df-gch 10235
This theorem is referenced by:  gchacg  10294
  Copyright terms: Public domain W3C validator