MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchhar Structured version   Visualization version   GIF version

Theorem gchhar 10366
Description: A "local" form of gchac 10368. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchhar ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)

Proof of Theorem gchhar
StepHypRef Expression
1 harcl 9248 . . . 4 (har‘𝐴) ∈ On
2 simp3 1136 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ GCH)
3 djudoml 9871 . . . 4 (((har‘𝐴) ∈ On ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴))
41, 2, 3sylancr 586 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴))
5 domnsym 8839 . . . . . . . . 9 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
653ad2ant1 1131 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≺ ω)
7 isfinite 9340 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
86, 7sylnibr 328 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ∈ Fin)
9 pwfi 8923 . . . . . . 7 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
108, 9sylnib 327 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝒫 𝐴 ∈ Fin)
11 djudoml 9871 . . . . . . 7 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
122, 1, 11sylancl 585 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
13 fvexd 6771 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ∈ V)
14 djuex 9597 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ V) → (𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V)
152, 13, 14syl2anc 583 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V)
16 canth2g 8867 . . . . . . . 8 ((𝒫 𝐴 ⊔ (har‘𝐴)) ∈ V → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)))
1715, 16syl 17 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)))
18 pwdjuen 9868 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
192, 1, 18sylancl 585 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
202pwexd 5297 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝒫 𝐴 ∈ V)
21 simp2 1135 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ∈ GCH)
22 harwdom 9280 . . . . . . . . . . 11 (𝐴 ∈ GCH → (har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴))
23 wdompwdom 9267 . . . . . . . . . . 11 ((har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
2421, 22, 233syl 18 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
25 xpdom2g 8808 . . . . . . . . . 10 ((𝒫 𝒫 𝐴 ∈ V ∧ 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴)) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2620, 24, 25syl2anc 583 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2721, 21xpexd 7579 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ∈ V)
2827pwexd 5297 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ∈ V)
29 pwdjuen 9868 . . . . . . . . . . . 12 ((𝒫 𝐴 ∈ GCH ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
302, 28, 29syl2anc 583 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
3130ensymd 8746 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)))
32 enrefg 8727 . . . . . . . . . . . . . 14 (𝒫 𝐴 ∈ GCH → 𝒫 𝐴 ≈ 𝒫 𝐴)
332, 32syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ 𝒫 𝐴)
34 gchxpidm 10356 . . . . . . . . . . . . . . 15 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
3521, 8, 34syl2anc 583 . . . . . . . . . . . . . 14 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ≈ 𝐴)
36 pwen 8886 . . . . . . . . . . . . . 14 ((𝐴 × 𝐴) ≈ 𝐴 → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
3735, 36syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
38 djuen 9856 . . . . . . . . . . . . 13 ((𝒫 𝐴 ≈ 𝒫 𝐴 ∧ 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
3933, 37, 38syl2anc 583 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
40 gchdjuidm 10355 . . . . . . . . . . . . 13 ((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
412, 10, 40syl2anc 583 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
42 entr 8747 . . . . . . . . . . . 12 (((𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
4339, 41, 42syl2anc 583 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
44 pwen 8886 . . . . . . . . . . 11 ((𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴 → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4543, 44syl 17 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
46 entr 8747 . . . . . . . . . 10 (((𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ∧ 𝒫 (𝒫 𝐴 ⊔ 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4731, 45, 46syl2anc 583 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
48 domentr 8754 . . . . . . . . 9 (((𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
4926, 47, 48syl2anc 583 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
50 endomtr 8753 . . . . . . . 8 ((𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
5119, 49, 50syl2anc 583 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
52 sdomdomtr 8846 . . . . . . 7 (((𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ 𝒫 (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
5317, 51, 52syl2anc 583 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
54 gchen1 10312 . . . . . 6 (((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) ∧ (𝒫 𝐴 ≼ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)) → 𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)))
552, 10, 12, 53, 54syl22anc 835 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)))
56 djucomen 9864 . . . . . 6 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ V) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
572, 13, 56syl2anc 583 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
58 entr 8747 . . . . 5 ((𝒫 𝐴 ≈ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≈ ((har‘𝐴) ⊔ 𝒫 𝐴)) → 𝒫 𝐴 ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
5955, 57, 58syl2anc 583 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ ((har‘𝐴) ⊔ 𝒫 𝐴))
6059ensymd 8746 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
61 domentr 8754 . . 3 (((har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝒫 𝐴) ∧ ((har‘𝐴) ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (har‘𝐴) ≼ 𝒫 𝐴)
624, 60, 61syl2anc 583 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ 𝒫 𝐴)
63 gchdjuidm 10355 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
6421, 8, 63syl2anc 583 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴𝐴) ≈ 𝐴)
65 pwen 8886 . . . . 5 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
6664, 65syl 17 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
67 djudoml 9871 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝐴 ≼ (𝐴 ⊔ (har‘𝐴)))
6821, 1, 67sylancl 585 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴 ⊔ (har‘𝐴)))
69 harndom 9251 . . . . . . . 8 ¬ (har‘𝐴) ≼ 𝐴
70 djudoml 9871 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴))
711, 21, 70sylancr 586 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴))
72 djucomen 9864 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
731, 21, 72sylancr 586 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
74 domentr 8754 . . . . . . . . . 10 (((har‘𝐴) ≼ ((har‘𝐴) ⊔ 𝐴) ∧ ((har‘𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (har‘𝐴))) → (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
7571, 73, 74syl2anc 583 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
76 domen2 8856 . . . . . . . . 9 (𝐴 ≈ (𝐴 ⊔ (har‘𝐴)) → ((har‘𝐴) ≼ 𝐴 ↔ (har‘𝐴) ≼ (𝐴 ⊔ (har‘𝐴))))
7775, 76syl5ibrcom 246 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ≈ (𝐴 ⊔ (har‘𝐴)) → (har‘𝐴) ≼ 𝐴))
7869, 77mtoi 198 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≈ (𝐴 ⊔ (har‘𝐴)))
79 brsdom 8718 . . . . . . 7 (𝐴 ≺ (𝐴 ⊔ (har‘𝐴)) ↔ (𝐴 ≼ (𝐴 ⊔ (har‘𝐴)) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ (har‘𝐴))))
8068, 78, 79sylanbrc 582 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≺ (𝐴 ⊔ (har‘𝐴)))
81 canth2g 8867 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
82 sdomdom 8723 . . . . . . . . . 10 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
8321, 81, 823syl 18 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ 𝒫 𝐴)
84 djudom1 9869 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ (har‘𝐴) ∈ On) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
8583, 1, 84sylancl 585 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)))
86 djudom2 9870 . . . . . . . . 9 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
8762, 2, 86syl2anc 583 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
88 domtr 8748 . . . . . . . 8 (((𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ (har‘𝐴)) ∧ (𝒫 𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
8985, 87, 88syl2anc 583 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
90 domentr 8754 . . . . . . 7 (((𝐴 ⊔ (har‘𝐴)) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)
9189, 41, 90syl2anc 583 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)
92 gchen2 10313 . . . . . 6 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ (𝐴 ⊔ (har‘𝐴)) ∧ (𝐴 ⊔ (har‘𝐴)) ≼ 𝒫 𝐴)) → (𝐴 ⊔ (har‘𝐴)) ≈ 𝒫 𝐴)
9321, 8, 80, 91, 92syl22anc 835 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ⊔ (har‘𝐴)) ≈ 𝒫 𝐴)
9493ensymd 8746 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝐴 ⊔ (har‘𝐴)))
95 entr 8747 . . . 4 ((𝒫 (𝐴𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (𝐴 ⊔ (har‘𝐴))) → 𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
9666, 94, 95syl2anc 583 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)))
97 endom 8722 . . 3 (𝒫 (𝐴𝐴) ≈ (𝐴 ⊔ (har‘𝐴)) → 𝒫 (𝐴𝐴) ≼ (𝐴 ⊔ (har‘𝐴)))
98 pwdjudom 9903 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴 ⊔ (har‘𝐴)) → 𝒫 𝐴 ≼ (har‘𝐴))
9996, 97, 983syl 18 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (har‘𝐴))
100 sbth 8833 . 2 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ (har‘𝐴)) → (har‘𝐴) ≈ 𝒫 𝐴)
10162, 99, 100syl2anc 583 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1085  wcel 2108  Vcvv 3422  𝒫 cpw 4530   class class class wbr 5070   × cxp 5578  Oncon0 6251  cfv 6418  ωcom 7687  cen 8688  cdom 8689  csdm 8690  Fincfn 8691  harchar 9245  * cwdom 9253  cdju 9587  GCHcgch 10307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-har 9246  df-wdom 9254  df-cnf 9350  df-dju 9590  df-card 9628  df-fin4 9974  df-gch 10308
This theorem is referenced by:  gchacg  10367
  Copyright terms: Public domain W3C validator