MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdomtri Structured version   Visualization version   GIF version

Theorem gchdomtri 10672
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 10724. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchdomtri ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))

Proof of Theorem gchdomtri
StepHypRef Expression
1 sdomdom 9011 . . . . 5 (𝐴𝐵𝐴𝐵)
21con3i 154 . . . 4 𝐴𝐵 → ¬ 𝐴𝐵)
3 reldom 8980 . . . . . . 7 Rel ≼
43brrelex1i 5738 . . . . . 6 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
543ad2ant3 1132 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
6 fidomtri2 10037 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
75, 6sylan 578 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
82, 7imbitrrid 245 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
98orrd 861 . 2 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
10 simp1 1133 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ GCH)
1110adantr 479 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
12 simpr 483 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
13 djudoml 10227 . . . . . 6 ((𝐴 ∈ GCH ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴𝐵))
1410, 5, 13syl2anc 582 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ (𝐴𝐵))
1514adantr 479 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴𝐵))
16 djulepw 10235 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
17163adant1 1127 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
1817adantr 479 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵) ≼ 𝒫 𝐴)
19 gchor 10670 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ 𝒫 𝐴)) → (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴))
2011, 12, 15, 18, 19syl22anc 837 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴))
21 djudoml 10227 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → 𝐵 ≼ (𝐵𝐴))
225, 10, 21syl2anc 582 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐵𝐴))
23 djucomen 10220 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → (𝐵𝐴) ≈ (𝐴𝐵))
245, 10, 23syl2anc 582 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵𝐴) ≈ (𝐴𝐵))
25 domentr 9044 . . . . . . . 8 ((𝐵 ≼ (𝐵𝐴) ∧ (𝐵𝐴) ≈ (𝐴𝐵)) → 𝐵 ≼ (𝐴𝐵))
2622, 24, 25syl2anc 582 . . . . . . 7 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐴𝐵))
27 domen2 9158 . . . . . . 7 (𝐴 ≈ (𝐴𝐵) → (𝐵𝐴𝐵 ≼ (𝐴𝐵)))
2826, 27syl5ibrcom 246 . . . . . 6 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 ≈ (𝐴𝐵) → 𝐵𝐴))
2928imp 405 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴𝐵)) → 𝐵𝐴)
3029olcd 872 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴𝐵)) → (𝐴𝐵𝐵𝐴))
31 simpl1 1188 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴 ∈ GCH)
32 canth2g 9169 . . . . . . 7 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
33 sdomdom 9011 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3431, 32, 333syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
35 simpl2 1189 . . . . . . . . 9 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝐴𝐴) ≈ 𝐴)
36 pwen 9188 . . . . . . . . 9 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
3735, 36syl 17 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
38 enen2 9156 . . . . . . . . 9 ((𝐴𝐵) ≈ 𝒫 𝐴 → (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) ↔ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴))
3938adantl 480 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) ↔ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴))
4037, 39mpbird 256 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴𝐴) ≈ (𝐴𝐵))
41 endom 9010 . . . . . . 7 (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) → 𝒫 (𝐴𝐴) ≼ (𝐴𝐵))
42 pwdjudom 10259 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
4340, 41, 423syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 𝐴𝐵)
44 domtr 9038 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
4534, 43, 44syl2anc 582 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴𝐵)
4645orcd 871 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
4730, 46jaodan 955 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴)) → (𝐴𝐵𝐵𝐴))
4820, 47syldan 589 . 2 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
499, 48pm2.61dan 811 1 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084  wcel 2099  Vcvv 3462  𝒫 cpw 4607   class class class wbr 5153  cen 8971  cdom 8972  csdm 8973  Fincfn 8974  cdju 9941  GCHcgch 10663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-wdom 9608  df-dju 9944  df-card 9982  df-gch 10664
This theorem is referenced by:  gchaclem  10721
  Copyright terms: Public domain W3C validator