MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdomtri Structured version   Visualization version   GIF version

Theorem gchdomtri 10049
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 10101. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchdomtri ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))

Proof of Theorem gchdomtri
StepHypRef Expression
1 sdomdom 8533 . . . . 5 (𝐴𝐵𝐴𝐵)
21con3i 157 . . . 4 𝐴𝐵 → ¬ 𝐴𝐵)
3 reldom 8511 . . . . . . 7 Rel ≼
43brrelex1i 5595 . . . . . 6 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
543ad2ant3 1132 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
6 fidomtri2 9420 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
75, 6sylan 583 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
82, 7syl5ibr 249 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
98orrd 860 . 2 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
10 simp1 1133 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ GCH)
1110adantr 484 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
12 simpr 488 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
13 djudoml 9608 . . . . . 6 ((𝐴 ∈ GCH ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴𝐵))
1410, 5, 13syl2anc 587 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ (𝐴𝐵))
1514adantr 484 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴𝐵))
16 djulepw 9616 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
17163adant1 1127 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
1817adantr 484 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵) ≼ 𝒫 𝐴)
19 gchor 10047 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ 𝒫 𝐴)) → (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴))
2011, 12, 15, 18, 19syl22anc 837 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴))
21 djudoml 9608 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → 𝐵 ≼ (𝐵𝐴))
225, 10, 21syl2anc 587 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐵𝐴))
23 djucomen 9601 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → (𝐵𝐴) ≈ (𝐴𝐵))
245, 10, 23syl2anc 587 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵𝐴) ≈ (𝐴𝐵))
25 domentr 8564 . . . . . . . 8 ((𝐵 ≼ (𝐵𝐴) ∧ (𝐵𝐴) ≈ (𝐴𝐵)) → 𝐵 ≼ (𝐴𝐵))
2622, 24, 25syl2anc 587 . . . . . . 7 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐴𝐵))
27 domen2 8657 . . . . . . 7 (𝐴 ≈ (𝐴𝐵) → (𝐵𝐴𝐵 ≼ (𝐴𝐵)))
2826, 27syl5ibrcom 250 . . . . . 6 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 ≈ (𝐴𝐵) → 𝐵𝐴))
2928imp 410 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴𝐵)) → 𝐵𝐴)
3029olcd 871 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴𝐵)) → (𝐴𝐵𝐵𝐴))
31 simpl1 1188 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴 ∈ GCH)
32 canth2g 8668 . . . . . . 7 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
33 sdomdom 8533 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3431, 32, 333syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
35 simpl2 1189 . . . . . . . . 9 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝐴𝐴) ≈ 𝐴)
36 pwen 8687 . . . . . . . . 9 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
3735, 36syl 17 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
38 enen2 8655 . . . . . . . . 9 ((𝐴𝐵) ≈ 𝒫 𝐴 → (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) ↔ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴))
3938adantl 485 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) ↔ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴))
4037, 39mpbird 260 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴𝐴) ≈ (𝐴𝐵))
41 endom 8532 . . . . . . 7 (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) → 𝒫 (𝐴𝐴) ≼ (𝐴𝐵))
42 pwdjudom 9636 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
4340, 41, 423syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 𝐴𝐵)
44 domtr 8558 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
4534, 43, 44syl2anc 587 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴𝐵)
4645orcd 870 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
4730, 46jaodan 955 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴)) → (𝐴𝐵𝐵𝐴))
4820, 47syldan 594 . 2 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
499, 48pm2.61dan 812 1 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084  wcel 2115  Vcvv 3480  𝒫 cpw 4522   class class class wbr 5052  cen 8502  cdom 8503  csdm 8504  Fincfn 8505  cdju 9324  GCHcgch 10040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-1o 8098  df-2o 8099  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-wdom 9026  df-dju 9327  df-card 9365  df-gch 10041
This theorem is referenced by:  gchaclem  10098
  Copyright terms: Public domain W3C validator