MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdomtri Structured version   Visualization version   GIF version

Theorem gchdomtri 9739
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 9791. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchdomtri ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))

Proof of Theorem gchdomtri
StepHypRef Expression
1 sdomdom 8223 . . . . 5 (𝐴𝐵𝐴𝐵)
21con3i 152 . . . 4 𝐴𝐵 → ¬ 𝐴𝐵)
3 reldom 8201 . . . . . . 7 Rel ≼
43brrelex1i 5363 . . . . . 6 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
543ad2ant3 1166 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
6 fidomtri2 9106 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
75, 6sylan 576 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
82, 7syl5ibr 238 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
98orrd 890 . 2 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
10 simp1 1167 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ GCH)
1110adantr 473 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
12 simpr 478 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
13 cdadom3 9298 . . . . . 6 ((𝐴 ∈ GCH ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
1410, 5, 13syl2anc 580 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
1514adantr 473 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
16 cdalepw 9306 . . . . . 6 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
17163adant1 1161 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
1817adantr 473 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
19 gchor 9737 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)) → (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴))
2011, 12, 15, 18, 19syl22anc 868 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴))
21 cdadom3 9298 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → 𝐵 ≼ (𝐵 +𝑐 𝐴))
225, 10, 21syl2anc 580 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐵 +𝑐 𝐴))
23 cdacomen 9291 . . . . . . . 8 (𝐵 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵)
24 domentr 8254 . . . . . . . 8 ((𝐵 ≼ (𝐵 +𝑐 𝐴) ∧ (𝐵 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵)) → 𝐵 ≼ (𝐴 +𝑐 𝐵))
2522, 23, 24sylancl 581 . . . . . . 7 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐴 +𝑐 𝐵))
26 domen2 8345 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 𝐵) → (𝐵𝐴𝐵 ≼ (𝐴 +𝑐 𝐵)))
2725, 26syl5ibrcom 239 . . . . . 6 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 ≈ (𝐴 +𝑐 𝐵) → 𝐵𝐴))
2827imp 396 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴 +𝑐 𝐵)) → 𝐵𝐴)
2928olcd 901 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴 +𝑐 𝐵)) → (𝐴𝐵𝐵𝐴))
30 simpl1 1243 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴 ∈ GCH)
31 canth2g 8356 . . . . . . 7 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
32 sdomdom 8223 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3330, 31, 323syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
34 simpl2 1245 . . . . . . . . 9 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝐴 +𝑐 𝐴) ≈ 𝐴)
35 pwen 8375 . . . . . . . . 9 ((𝐴 +𝑐 𝐴) ≈ 𝐴 → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴)
3634, 35syl 17 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴)
37 enen2 8343 . . . . . . . . 9 ((𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴 → (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) ↔ 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴))
3837adantl 474 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) ↔ 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴))
3936, 38mpbird 249 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵))
40 endom 8222 . . . . . . 7 (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) → 𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵))
41 pwcdadom 9326 . . . . . . 7 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝒫 𝐴𝐵)
4239, 40, 413syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 𝐴𝐵)
43 domtr 8248 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
4433, 42, 43syl2anc 580 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴𝐵)
4544orcd 900 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
4629, 45jaodan 981 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴)) → (𝐴𝐵𝐵𝐴))
4720, 46syldan 586 . 2 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
489, 47pm2.61dan 848 1 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874  w3a 1108  wcel 2157  Vcvv 3385  𝒫 cpw 4349   class class class wbr 4843  (class class class)co 6878  cen 8192  cdom 8193  csdm 8194  Fincfn 8195   +𝑐 ccda 9277  GCHcgch 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-1o 7799  df-2o 7800  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-wdom 8706  df-card 9051  df-cda 9278  df-gch 9731
This theorem is referenced by:  gchaclem  9788
  Copyright terms: Public domain W3C validator