MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdomtri Structured version   Visualization version   GIF version

Theorem gchdomtri 10626
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 10678. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchdomtri ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))

Proof of Theorem gchdomtri
StepHypRef Expression
1 sdomdom 8978 . . . . 5 (𝐴𝐵𝐴𝐵)
21con3i 154 . . . 4 𝐴𝐵 → ¬ 𝐴𝐵)
3 reldom 8947 . . . . . . 7 Rel ≼
43brrelex1i 5732 . . . . . 6 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
543ad2ant3 1135 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
6 fidomtri2 9991 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
75, 6sylan 580 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
82, 7imbitrrid 245 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
98orrd 861 . 2 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
10 simp1 1136 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ GCH)
1110adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
12 simpr 485 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
13 djudoml 10181 . . . . . 6 ((𝐴 ∈ GCH ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴𝐵))
1410, 5, 13syl2anc 584 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ (𝐴𝐵))
1514adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴𝐵))
16 djulepw 10189 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
17163adant1 1130 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
1817adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵) ≼ 𝒫 𝐴)
19 gchor 10624 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ 𝒫 𝐴)) → (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴))
2011, 12, 15, 18, 19syl22anc 837 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴))
21 djudoml 10181 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → 𝐵 ≼ (𝐵𝐴))
225, 10, 21syl2anc 584 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐵𝐴))
23 djucomen 10174 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → (𝐵𝐴) ≈ (𝐴𝐵))
245, 10, 23syl2anc 584 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵𝐴) ≈ (𝐴𝐵))
25 domentr 9011 . . . . . . . 8 ((𝐵 ≼ (𝐵𝐴) ∧ (𝐵𝐴) ≈ (𝐴𝐵)) → 𝐵 ≼ (𝐴𝐵))
2622, 24, 25syl2anc 584 . . . . . . 7 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐴𝐵))
27 domen2 9122 . . . . . . 7 (𝐴 ≈ (𝐴𝐵) → (𝐵𝐴𝐵 ≼ (𝐴𝐵)))
2826, 27syl5ibrcom 246 . . . . . 6 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 ≈ (𝐴𝐵) → 𝐵𝐴))
2928imp 407 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴𝐵)) → 𝐵𝐴)
3029olcd 872 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴𝐵)) → (𝐴𝐵𝐵𝐴))
31 simpl1 1191 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴 ∈ GCH)
32 canth2g 9133 . . . . . . 7 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
33 sdomdom 8978 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3431, 32, 333syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
35 simpl2 1192 . . . . . . . . 9 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝐴𝐴) ≈ 𝐴)
36 pwen 9152 . . . . . . . . 9 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
3735, 36syl 17 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
38 enen2 9120 . . . . . . . . 9 ((𝐴𝐵) ≈ 𝒫 𝐴 → (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) ↔ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴))
3938adantl 482 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) ↔ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴))
4037, 39mpbird 256 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴𝐴) ≈ (𝐴𝐵))
41 endom 8977 . . . . . . 7 (𝒫 (𝐴𝐴) ≈ (𝐴𝐵) → 𝒫 (𝐴𝐴) ≼ (𝐴𝐵))
42 pwdjudom 10213 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
4340, 41, 423syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝒫 𝐴𝐵)
44 domtr 9005 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
4534, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → 𝐴𝐵)
4645orcd 871 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴𝐵) ≈ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
4730, 46jaodan 956 . . 3 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 ≈ (𝐴𝐵) ∨ (𝐴𝐵) ≈ 𝒫 𝐴)) → (𝐴𝐵𝐵𝐴))
4820, 47syldan 591 . 2 (((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
499, 48pm2.61dan 811 1 ((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087  wcel 2106  Vcvv 3474  𝒫 cpw 4602   class class class wbr 5148  cen 8938  cdom 8939  csdm 8940  Fincfn 8941  cdju 9895  GCHcgch 10617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-wdom 9562  df-dju 9898  df-card 9936  df-gch 10618
This theorem is referenced by:  gchaclem  10675
  Copyright terms: Public domain W3C validator