Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace2 Structured version   Visualization version   GIF version

Theorem gneispace2 43485
Description: The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace2 (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑉(𝑓,𝑛,𝑠,𝑝)

Proof of Theorem gneispace2
StepHypRef Expression
1 id 22 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2 dmeq 5900 . . . 4 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32pweqd 4615 . . . . . . 7 (𝑓 = 𝐹 → 𝒫 dom 𝑓 = 𝒫 dom 𝐹)
43difeq1d 4117 . . . . . 6 (𝑓 = 𝐹 → (𝒫 dom 𝑓 ∖ {∅}) = (𝒫 dom 𝐹 ∖ {∅}))
54pweqd 4615 . . . . 5 (𝑓 = 𝐹 → 𝒫 (𝒫 dom 𝑓 ∖ {∅}) = 𝒫 (𝒫 dom 𝐹 ∖ {∅}))
65difeq1d 4117 . . . 4 (𝑓 = 𝐹 → (𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) = (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
71, 2, 6feq123d 6705 . . 3 (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
8 fveq1 6890 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
98eleq2d 2814 . . . . . . . 8 (𝑓 = 𝐹 → (𝑠 ∈ (𝑓𝑝) ↔ 𝑠 ∈ (𝐹𝑝)))
109imbi2d 340 . . . . . . 7 (𝑓 = 𝐹 → ((𝑛𝑠𝑠 ∈ (𝑓𝑝)) ↔ (𝑛𝑠𝑠 ∈ (𝐹𝑝))))
113, 10raleqbidv 3337 . . . . . 6 (𝑓 = 𝐹 → (∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝)) ↔ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
1211anbi2d 628 . . . . 5 (𝑓 = 𝐹 → ((𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ (𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
138, 12raleqbidv 3337 . . . 4 (𝑓 = 𝐹 → (∀𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
142, 13raleqbidv 3337 . . 3 (𝑓 = 𝐹 → (∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
157, 14anbi12d 630 . 2 (𝑓 = 𝐹 → ((𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝)))) ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
16 gneispace.a . 2 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
1715, 16elab2g 3667 1 (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {cab 2704  wral 3056  cdif 3941  wss 3944  c0 4318  𝒫 cpw 4598  {csn 4624  dom cdm 5672  wf 6538  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by:  gneispace3  43486  gneispacef  43488  gneispaceel  43496  gneispacess  43498
  Copyright terms: Public domain W3C validator