Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace2 Structured version   Visualization version   GIF version

Theorem gneispace2 41434
Description: The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace2 (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑉(𝑓,𝑛,𝑠,𝑝)

Proof of Theorem gneispace2
StepHypRef Expression
1 id 22 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2 dmeq 5781 . . . 4 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32pweqd 4541 . . . . . . 7 (𝑓 = 𝐹 → 𝒫 dom 𝑓 = 𝒫 dom 𝐹)
43difeq1d 4045 . . . . . 6 (𝑓 = 𝐹 → (𝒫 dom 𝑓 ∖ {∅}) = (𝒫 dom 𝐹 ∖ {∅}))
54pweqd 4541 . . . . 5 (𝑓 = 𝐹 → 𝒫 (𝒫 dom 𝑓 ∖ {∅}) = 𝒫 (𝒫 dom 𝐹 ∖ {∅}))
65difeq1d 4045 . . . 4 (𝑓 = 𝐹 → (𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) = (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
71, 2, 6feq123d 6543 . . 3 (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
8 fveq1 6725 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
98eleq2d 2824 . . . . . . . 8 (𝑓 = 𝐹 → (𝑠 ∈ (𝑓𝑝) ↔ 𝑠 ∈ (𝐹𝑝)))
109imbi2d 344 . . . . . . 7 (𝑓 = 𝐹 → ((𝑛𝑠𝑠 ∈ (𝑓𝑝)) ↔ (𝑛𝑠𝑠 ∈ (𝐹𝑝))))
113, 10raleqbidv 3320 . . . . . 6 (𝑓 = 𝐹 → (∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝)) ↔ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
1211anbi2d 632 . . . . 5 (𝑓 = 𝐹 → ((𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ (𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
138, 12raleqbidv 3320 . . . 4 (𝑓 = 𝐹 → (∀𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
142, 13raleqbidv 3320 . . 3 (𝑓 = 𝐹 → (∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
157, 14anbi12d 634 . 2 (𝑓 = 𝐹 → ((𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝)))) ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
16 gneispace.a . 2 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
1715, 16elab2g 3596 1 (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  {cab 2715  wral 3062  cdif 3872  wss 3875  c0 4246  𝒫 cpw 4522  {csn 4550  dom cdm 5560  wf 6385  cfv 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-ext 2709
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3067  df-rab 3071  df-v 3417  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-br 5063  df-opab 5125  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-fv 6397
This theorem is referenced by:  gneispace3  41435  gneispacef  41437  gneispaceel  41445  gneispacess  41447
  Copyright terms: Public domain W3C validator