Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace2 Structured version   Visualization version   GIF version

Theorem gneispace2 40488
 Description: The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace2 (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑉(𝑓,𝑛,𝑠,𝑝)

Proof of Theorem gneispace2
StepHypRef Expression
1 id 22 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2 dmeq 5775 . . . 4 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32pweqd 4561 . . . . . . 7 (𝑓 = 𝐹 → 𝒫 dom 𝑓 = 𝒫 dom 𝐹)
43difeq1d 4101 . . . . . 6 (𝑓 = 𝐹 → (𝒫 dom 𝑓 ∖ {∅}) = (𝒫 dom 𝐹 ∖ {∅}))
54pweqd 4561 . . . . 5 (𝑓 = 𝐹 → 𝒫 (𝒫 dom 𝑓 ∖ {∅}) = 𝒫 (𝒫 dom 𝐹 ∖ {∅}))
65difeq1d 4101 . . . 4 (𝑓 = 𝐹 → (𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) = (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
71, 2, 6feq123d 6506 . . 3 (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
8 fveq1 6672 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
98eleq2d 2901 . . . . . . . 8 (𝑓 = 𝐹 → (𝑠 ∈ (𝑓𝑝) ↔ 𝑠 ∈ (𝐹𝑝)))
109imbi2d 343 . . . . . . 7 (𝑓 = 𝐹 → ((𝑛𝑠𝑠 ∈ (𝑓𝑝)) ↔ (𝑛𝑠𝑠 ∈ (𝐹𝑝))))
113, 10raleqbidv 3404 . . . . . 6 (𝑓 = 𝐹 → (∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝)) ↔ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
1211anbi2d 630 . . . . 5 (𝑓 = 𝐹 → ((𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ (𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
138, 12raleqbidv 3404 . . . 4 (𝑓 = 𝐹 → (∀𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
142, 13raleqbidv 3404 . . 3 (𝑓 = 𝐹 → (∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
157, 14anbi12d 632 . 2 (𝑓 = 𝐹 → ((𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝)))) ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
16 gneispace.a . 2 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
1715, 16elab2g 3671 1 (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1536   ∈ wcel 2113  {cab 2802  ∀wral 3141   ∖ cdif 3936   ⊆ wss 3939  ∅c0 4294  𝒫 cpw 4542  {csn 4570  dom cdm 5558  ⟶wf 6354  ‘cfv 6358 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366 This theorem is referenced by:  gneispace3  40489  gneispacef  40491  gneispaceel  40499  gneispacess  40501
 Copyright terms: Public domain W3C validator