Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatmstcOLDN Structured version   Visualization version   GIF version

Theorem hlatmstcOLDN 38794
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 32146 analog.) (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlatmstc.b 𝐡 = (Baseβ€˜πΎ)
hlatmstc.l ≀ = (leβ€˜πΎ)
hlatmstc.u π‘ˆ = (lubβ€˜πΎ)
hlatmstc.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hlatmstcOLDN ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (π‘ˆβ€˜{𝑦 ∈ 𝐴 ∣ 𝑦 ≀ 𝑋}) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐡   𝑦, ≀   𝑦,𝑋
Allowed substitution hints:   π‘ˆ(𝑦)   𝐾(𝑦)

Proof of Theorem hlatmstcOLDN
StepHypRef Expression
1 hlomcmat 38761 . 2 (𝐾 ∈ HL β†’ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
2 hlatmstc.b . . 3 𝐡 = (Baseβ€˜πΎ)
3 hlatmstc.l . . 3 ≀ = (leβ€˜πΎ)
4 hlatmstc.u . . 3 π‘ˆ = (lubβ€˜πΎ)
5 hlatmstc.a . . 3 𝐴 = (Atomsβ€˜πΎ)
62, 3, 4, 5atlatmstc 38715 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐡) β†’ (π‘ˆβ€˜{𝑦 ∈ 𝐴 ∣ 𝑦 ≀ 𝑋}) = 𝑋)
71, 6sylan 579 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (π‘ˆβ€˜{𝑦 ∈ 𝐴 ∣ 𝑦 ≀ 𝑋}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  {crab 3427   class class class wbr 5142  β€˜cfv 6542  Basecbs 17165  lecple 17225  lubclub 18286  CLatccla 18475  OMLcoml 38571  Atomscatm 38659  AtLatcal 38660  HLchlt 38746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-proset 18272  df-poset 18290  df-plt 18307  df-lub 18323  df-glb 18324  df-join 18325  df-meet 18326  df-p0 18402  df-lat 18409  df-clat 18476  df-oposet 38572  df-ol 38574  df-oml 38575  df-covers 38662  df-ats 38663  df-atl 38694  df-cvlat 38718  df-hlat 38747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator