Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatmstcOLDN Structured version   Visualization version   GIF version

Theorem hlatmstcOLDN 39356
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 32396 analog.) (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlatmstc.b 𝐵 = (Base‘𝐾)
hlatmstc.l = (le‘𝐾)
hlatmstc.u 𝑈 = (lub‘𝐾)
hlatmstc.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatmstcOLDN ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑈‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝐾(𝑦)

Proof of Theorem hlatmstcOLDN
StepHypRef Expression
1 hlomcmat 39323 . 2 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
2 hlatmstc.b . . 3 𝐵 = (Base‘𝐾)
3 hlatmstc.l . . 3 = (le‘𝐾)
4 hlatmstc.u . . 3 𝑈 = (lub‘𝐾)
5 hlatmstc.a . . 3 𝐴 = (Atoms‘𝐾)
62, 3, 4, 5atlatmstc 39277 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑈‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
71, 6sylan 579 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑈‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cfv 6575  Basecbs 17260  lecple 17320  lubclub 18381  CLatccla 18570  OMLcoml 39133  Atomscatm 39221  AtLatcal 39222  HLchlt 39308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-proset 18367  df-poset 18385  df-plt 18402  df-lub 18418  df-glb 18419  df-join 18420  df-meet 18421  df-p0 18497  df-lat 18504  df-clat 18571  df-oposet 39134  df-ol 39136  df-oml 39137  df-covers 39224  df-ats 39225  df-atl 39256  df-cvlat 39280  df-hlat 39309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator