| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39356 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | latpos 18397 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Posetcpo 18268 Latclat 18390 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-lat 18391 df-atl 39291 df-cvlat 39315 df-hlat 39344 |
| This theorem is referenced by: hlhgt2 39383 hl0lt1N 39384 cvrval3 39407 cvrexchlem 39413 cvratlem 39415 cvrat 39416 atlelt 39432 2atlt 39433 athgt 39450 1cvratex 39467 ps-2 39472 llnnleat 39507 llncmp 39516 2llnmat 39518 lplnnle2at 39535 llncvrlpln 39552 lplncmp 39556 lvolnle3at 39576 lplncvrlvol 39610 lvolcmp 39611 pmaple 39755 2lnat 39778 2atm2atN 39779 lhp2lt 39995 lhp0lt 39997 dia2dimlem2 41059 dia2dimlem3 41060 dih1 41280 |
| Copyright terms: Public domain | W3C validator |