![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39319 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | latpos 18508 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Posetcpo 18377 Latclat 18501 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-lat 18502 df-atl 39254 df-cvlat 39278 df-hlat 39307 |
This theorem is referenced by: hlhgt2 39346 hl0lt1N 39347 cvrval3 39370 cvrexchlem 39376 cvratlem 39378 cvrat 39379 atlelt 39395 2atlt 39396 athgt 39413 1cvratex 39430 ps-2 39435 llnnleat 39470 llncmp 39479 2llnmat 39481 lplnnle2at 39498 llncvrlpln 39515 lplncmp 39519 lvolnle3at 39539 lplncvrlvol 39573 lvolcmp 39574 pmaple 39718 2lnat 39741 2atm2atN 39742 lhp2lt 39958 lhp0lt 39960 dia2dimlem2 41022 dia2dimlem3 41023 dih1 41243 |
Copyright terms: Public domain | W3C validator |