| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39364 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | latpos 18483 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Posetcpo 18353 Latclat 18476 HLchlt 39351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 df-lat 18477 df-atl 39299 df-cvlat 39323 df-hlat 39352 |
| This theorem is referenced by: hlhgt2 39391 hl0lt1N 39392 cvrval3 39415 cvrexchlem 39421 cvratlem 39423 cvrat 39424 atlelt 39440 2atlt 39441 athgt 39458 1cvratex 39475 ps-2 39480 llnnleat 39515 llncmp 39524 2llnmat 39526 lplnnle2at 39543 llncvrlpln 39560 lplncmp 39564 lvolnle3at 39584 lplncvrlvol 39618 lvolcmp 39619 pmaple 39763 2lnat 39786 2atm2atN 39787 lhp2lt 40003 lhp0lt 40005 dia2dimlem2 41067 dia2dimlem3 41068 dih1 41288 |
| Copyright terms: Public domain | W3C validator |