| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39482 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | latpos 18346 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Posetcpo 18215 Latclat 18339 HLchlt 39469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-iota 6442 df-fv 6494 df-ov 7355 df-lat 18340 df-atl 39417 df-cvlat 39441 df-hlat 39470 |
| This theorem is referenced by: hlhgt2 39508 hl0lt1N 39509 cvrval3 39532 cvrexchlem 39538 cvratlem 39540 cvrat 39541 atlelt 39557 2atlt 39558 athgt 39575 1cvratex 39592 ps-2 39597 llnnleat 39632 llncmp 39641 2llnmat 39643 lplnnle2at 39660 llncvrlpln 39677 lplncmp 39681 lvolnle3at 39701 lplncvrlvol 39735 lvolcmp 39736 pmaple 39880 2lnat 39903 2atm2atN 39904 lhp2lt 40120 lhp0lt 40122 dia2dimlem2 41184 dia2dimlem3 41185 dih1 41405 |
| Copyright terms: Public domain | W3C validator |