Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37304 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | latpos 18071 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Posetcpo 17940 Latclat 18064 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 df-lat 18065 df-atl 37239 df-cvlat 37263 df-hlat 37292 |
This theorem is referenced by: hlhgt2 37330 hl0lt1N 37331 cvrval3 37354 cvrexchlem 37360 cvratlem 37362 cvrat 37363 atlelt 37379 2atlt 37380 athgt 37397 1cvratex 37414 ps-2 37419 llnnleat 37454 llncmp 37463 2llnmat 37465 lplnnle2at 37482 llncvrlpln 37499 lplncmp 37503 lvolnle3at 37523 lplncvrlvol 37557 lvolcmp 37558 pmaple 37702 2lnat 37725 2atm2atN 37726 lhp2lt 37942 lhp0lt 37944 dia2dimlem2 39006 dia2dimlem3 39007 dih1 39227 |
Copyright terms: Public domain | W3C validator |