![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 35376 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | latpos 17362 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 Posetcpo 17252 Latclat 17357 HLchlt 35363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-xp 5316 df-dm 5320 df-iota 6062 df-fv 6107 df-ov 6879 df-lat 17358 df-atl 35311 df-cvlat 35335 df-hlat 35364 |
This theorem is referenced by: hlhgt2 35402 hl0lt1N 35403 cvrval3 35426 cvrexchlem 35432 cvratlem 35434 cvrat 35435 atlelt 35451 2atlt 35452 athgt 35469 1cvratex 35486 ps-2 35491 llnnleat 35526 llncmp 35535 2llnmat 35537 lplnnle2at 35554 llncvrlpln 35571 lplncmp 35575 lvolnle3at 35595 lplncvrlvol 35629 lvolcmp 35630 pmaple 35774 2lnat 35797 2atm2atN 35798 lhp2lt 36014 lhp0lt 36016 dia2dimlem2 37078 dia2dimlem3 37079 dih1 37299 |
Copyright terms: Public domain | W3C validator |