| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39381 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | latpos 18448 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Posetcpo 18319 Latclat 18441 HLchlt 39368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 df-lat 18442 df-atl 39316 df-cvlat 39340 df-hlat 39369 |
| This theorem is referenced by: hlhgt2 39408 hl0lt1N 39409 cvrval3 39432 cvrexchlem 39438 cvratlem 39440 cvrat 39441 atlelt 39457 2atlt 39458 athgt 39475 1cvratex 39492 ps-2 39497 llnnleat 39532 llncmp 39541 2llnmat 39543 lplnnle2at 39560 llncvrlpln 39577 lplncmp 39581 lvolnle3at 39601 lplncvrlvol 39635 lvolcmp 39636 pmaple 39780 2lnat 39803 2atm2atN 39804 lhp2lt 40020 lhp0lt 40022 dia2dimlem2 41084 dia2dimlem3 41085 dih1 41305 |
| Copyright terms: Public domain | W3C validator |