![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39345 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | latpos 18496 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Posetcpo 18365 Latclat 18489 HLchlt 39332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 df-lat 18490 df-atl 39280 df-cvlat 39304 df-hlat 39333 |
This theorem is referenced by: hlhgt2 39372 hl0lt1N 39373 cvrval3 39396 cvrexchlem 39402 cvratlem 39404 cvrat 39405 atlelt 39421 2atlt 39422 athgt 39439 1cvratex 39456 ps-2 39461 llnnleat 39496 llncmp 39505 2llnmat 39507 lplnnle2at 39524 llncvrlpln 39541 lplncmp 39545 lvolnle3at 39565 lplncvrlvol 39599 lvolcmp 39600 pmaple 39744 2lnat 39767 2atm2atN 39768 lhp2lt 39984 lhp0lt 39986 dia2dimlem2 41048 dia2dimlem3 41049 dih1 41269 |
Copyright terms: Public domain | W3C validator |