| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39363 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | latpos 18404 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Posetcpo 18275 Latclat 18397 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-lat 18398 df-atl 39298 df-cvlat 39322 df-hlat 39351 |
| This theorem is referenced by: hlhgt2 39390 hl0lt1N 39391 cvrval3 39414 cvrexchlem 39420 cvratlem 39422 cvrat 39423 atlelt 39439 2atlt 39440 athgt 39457 1cvratex 39474 ps-2 39479 llnnleat 39514 llncmp 39523 2llnmat 39525 lplnnle2at 39542 llncvrlpln 39559 lplncmp 39563 lvolnle3at 39583 lplncvrlvol 39617 lvolcmp 39618 pmaple 39762 2lnat 39785 2atm2atN 39786 lhp2lt 40002 lhp0lt 40004 dia2dimlem2 41066 dia2dimlem3 41067 dih1 41287 |
| Copyright terms: Public domain | W3C validator |