| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39401 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | latpos 18341 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Posetcpo 18210 Latclat 18334 HLchlt 39388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-dm 5626 df-iota 6437 df-fv 6489 df-ov 7349 df-lat 18335 df-atl 39336 df-cvlat 39360 df-hlat 39389 |
| This theorem is referenced by: hlhgt2 39427 hl0lt1N 39428 cvrval3 39451 cvrexchlem 39457 cvratlem 39459 cvrat 39460 atlelt 39476 2atlt 39477 athgt 39494 1cvratex 39511 ps-2 39516 llnnleat 39551 llncmp 39560 2llnmat 39562 lplnnle2at 39579 llncvrlpln 39596 lplncmp 39600 lvolnle3at 39620 lplncvrlvol 39654 lvolcmp 39655 pmaple 39799 2lnat 39822 2atm2atN 39823 lhp2lt 40039 lhp0lt 40041 dia2dimlem2 41103 dia2dimlem3 41104 dih1 41324 |
| Copyright terms: Public domain | W3C validator |