| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39341 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | latpos 18362 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Posetcpo 18231 Latclat 18355 HLchlt 39328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-dm 5633 df-iota 6442 df-fv 6494 df-ov 7356 df-lat 18356 df-atl 39276 df-cvlat 39300 df-hlat 39329 |
| This theorem is referenced by: hlhgt2 39368 hl0lt1N 39369 cvrval3 39392 cvrexchlem 39398 cvratlem 39400 cvrat 39401 atlelt 39417 2atlt 39418 athgt 39435 1cvratex 39452 ps-2 39457 llnnleat 39492 llncmp 39501 2llnmat 39503 lplnnle2at 39520 llncvrlpln 39537 lplncmp 39541 lvolnle3at 39561 lplncvrlvol 39595 lvolcmp 39596 pmaple 39740 2lnat 39763 2atm2atN 39764 lhp2lt 39980 lhp0lt 39982 dia2dimlem2 41044 dia2dimlem3 41045 dih1 41265 |
| Copyright terms: Public domain | W3C validator |