Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlpos | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlpos | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37377 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | latpos 18156 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Posetcpo 18025 Latclat 18149 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-lat 18150 df-atl 37312 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: hlhgt2 37403 hl0lt1N 37404 cvrval3 37427 cvrexchlem 37433 cvratlem 37435 cvrat 37436 atlelt 37452 2atlt 37453 athgt 37470 1cvratex 37487 ps-2 37492 llnnleat 37527 llncmp 37536 2llnmat 37538 lplnnle2at 37555 llncvrlpln 37572 lplncmp 37576 lvolnle3at 37596 lplncvrlvol 37630 lvolcmp 37631 pmaple 37775 2lnat 37798 2atm2atN 37799 lhp2lt 38015 lhp0lt 38017 dia2dimlem2 39079 dia2dimlem3 39080 dih1 39300 |
Copyright terms: Public domain | W3C validator |