Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmaple Structured version   Visualization version   GIF version

Theorem pmaple 39726
Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmaple.b 𝐵 = (Base‘𝐾)
pmaple.l = (le‘𝐾)
pmaple.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmaple ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))

Proof of Theorem pmaple
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hlpos 39330 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2 pmaple.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
3 eqid 2735 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
42, 3atbase 39253 . . . . . . . . 9 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
5 pmaple.l . . . . . . . . . . . . . . 15 = (le‘𝐾)
62, 5postr 18330 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
76exp4b 430 . . . . . . . . . . . . 13 (𝐾 ∈ Poset → ((𝑝𝐵𝑋𝐵𝑌𝐵) → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
873expd 1354 . . . . . . . . . . . 12 (𝐾 ∈ Poset → (𝑝𝐵 → (𝑋𝐵 → (𝑌𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
98com23 86 . . . . . . . . . . 11 (𝐾 ∈ Poset → (𝑋𝐵 → (𝑝𝐵 → (𝑌𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
109com34 91 . . . . . . . . . 10 (𝐾 ∈ Poset → (𝑋𝐵 → (𝑌𝐵 → (𝑝𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
11103imp 1110 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
124, 11syl5 34 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (Atoms‘𝐾) → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
1312com34 91 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (Atoms‘𝐾) → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌))))
1413com23 86 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑝 ∈ (Atoms‘𝐾) → (𝑝 𝑋𝑝 𝑌))))
1514ralrimdv 3138 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌)))
161, 15syl3an1 1163 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌)))
17 ss2rab 4046 . . . 4 ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ↔ ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌))
1816, 17imbitrrdi 252 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
19 hlclat 39322 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
20 ssrab2 4055 . . . . . . . . 9 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ (Atoms‘𝐾)
212, 3atssbase 39254 . . . . . . . . 9 (Atoms‘𝐾) ⊆ 𝐵
2220, 21sstri 3968 . . . . . . . 8 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ 𝐵
23 eqid 2735 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
242, 5, 23lubss 18521 . . . . . . . 8 ((𝐾 ∈ CLat ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ 𝐵 ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
2522, 24mp3an2 1451 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
2625ex 412 . . . . . 6 (𝐾 ∈ CLat → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
2719, 26syl 17 . . . . 5 (𝐾 ∈ HL → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
28273ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
29 hlomcmat 39329 . . . . . . 7 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
30293ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
31 simp2 1137 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
322, 5, 23, 3atlatmstc 39283 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) = 𝑋)
3330, 31, 32syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) = 𝑋)
34 simp3 1138 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
352, 5, 23, 3atlatmstc 39283 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) = 𝑌)
3630, 34, 35syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) = 𝑌)
3733, 36breq12d 5132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) ↔ 𝑋 𝑌))
3828, 37sylibd 239 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → 𝑋 𝑌))
3918, 38impbid 212 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
40 pmaple.m . . . . 5 𝑀 = (pmap‘𝐾)
412, 5, 3, 40pmapval 39722 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋})
42413adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋})
432, 5, 3, 40pmapval 39722 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑀𝑌) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})
44433adant2 1131 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})
4542, 44sseq12d 3992 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
4639, 45bitr4d 282 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  wss 3926   class class class wbr 5119  cfv 6530  Basecbs 17226  lecple 17276  Posetcpo 18317  lubclub 18319  CLatccla 18506  OMLcoml 39139  Atomscatm 39227  AtLatcal 39228  HLchlt 39314  pmapcpmap 39462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-pmap 39469
This theorem is referenced by:  pmap11  39727  hlmod1i  39821  paddunN  39892  pmapojoinN  39933  pl42N  39948
  Copyright terms: Public domain W3C validator