Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmaple Structured version   Visualization version   GIF version

Theorem pmaple 37387
Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmaple.b 𝐵 = (Base‘𝐾)
pmaple.l = (le‘𝐾)
pmaple.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmaple ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))

Proof of Theorem pmaple
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hlpos 36992 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2 pmaple.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
3 eqid 2738 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
42, 3atbase 36915 . . . . . . . . 9 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
5 pmaple.l . . . . . . . . . . . . . . 15 = (le‘𝐾)
62, 5postr 17672 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
76exp4b 434 . . . . . . . . . . . . 13 (𝐾 ∈ Poset → ((𝑝𝐵𝑋𝐵𝑌𝐵) → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
873expd 1354 . . . . . . . . . . . 12 (𝐾 ∈ Poset → (𝑝𝐵 → (𝑋𝐵 → (𝑌𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
98com23 86 . . . . . . . . . . 11 (𝐾 ∈ Poset → (𝑋𝐵 → (𝑝𝐵 → (𝑌𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
109com34 91 . . . . . . . . . 10 (𝐾 ∈ Poset → (𝑋𝐵 → (𝑌𝐵 → (𝑝𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
11103imp 1112 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
124, 11syl5 34 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (Atoms‘𝐾) → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
1312com34 91 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (Atoms‘𝐾) → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌))))
1413com23 86 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑝 ∈ (Atoms‘𝐾) → (𝑝 𝑋𝑝 𝑌))))
1514ralrimdv 3100 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌)))
161, 15syl3an1 1164 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌)))
17 ss2rab 3958 . . . 4 ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ↔ ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌))
1816, 17syl6ibr 255 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
19 hlclat 36984 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
20 ssrab2 3967 . . . . . . . . 9 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ (Atoms‘𝐾)
212, 3atssbase 36916 . . . . . . . . 9 (Atoms‘𝐾) ⊆ 𝐵
2220, 21sstri 3884 . . . . . . . 8 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ 𝐵
23 eqid 2738 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
242, 5, 23lubss 17840 . . . . . . . 8 ((𝐾 ∈ CLat ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ 𝐵 ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
2522, 24mp3an2 1450 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
2625ex 416 . . . . . 6 (𝐾 ∈ CLat → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
2719, 26syl 17 . . . . 5 (𝐾 ∈ HL → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
28273ad2ant1 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
29 hlomcmat 36991 . . . . . . 7 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
30293ad2ant1 1134 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
31 simp2 1138 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
322, 5, 23, 3atlatmstc 36945 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) = 𝑋)
3330, 31, 32syl2anc 587 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) = 𝑋)
34 simp3 1139 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
352, 5, 23, 3atlatmstc 36945 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) = 𝑌)
3630, 34, 35syl2anc 587 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) = 𝑌)
3733, 36breq12d 5040 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) ↔ 𝑋 𝑌))
3828, 37sylibd 242 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → 𝑋 𝑌))
3918, 38impbid 215 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
40 pmaple.m . . . . 5 𝑀 = (pmap‘𝐾)
412, 5, 3, 40pmapval 37383 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋})
42413adant3 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋})
432, 5, 3, 40pmapval 37383 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑀𝑌) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})
44433adant2 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})
4542, 44sseq12d 3908 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
4639, 45bitr4d 285 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1088   = wceq 1542  wcel 2113  wral 3053  {crab 3057  wss 3841   class class class wbr 5027  cfv 6333  Basecbs 16579  lecple 16668  Posetcpo 17659  lubclub 17661  CLatccla 17826  OMLcoml 36801  Atomscatm 36889  AtLatcal 36890  HLchlt 36976  pmapcpmap 37123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-lat 17765  df-clat 17827  df-oposet 36802  df-ol 36804  df-oml 36805  df-covers 36892  df-ats 36893  df-atl 36924  df-cvlat 36948  df-hlat 36977  df-pmap 37130
This theorem is referenced by:  pmap11  37388  hlmod1i  37482  paddunN  37553  pmapojoinN  37594  pl42N  37609
  Copyright terms: Public domain W3C validator