| Step | Hyp | Ref
| Expression |
| 1 | | hlpos 39367 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
| 2 | | pmaple.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) |
| 3 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 4 | 2, 3 | atbase 39290 |
. . . . . . . . 9
⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ 𝐵) |
| 5 | | pmaple.l |
. . . . . . . . . . . . . . 15
⊢ ≤ =
(le‘𝐾) |
| 6 | 2, 5 | postr 18366 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Poset ∧ (𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → 𝑝 ≤ 𝑌)) |
| 7 | 6 | exp4b 430 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Poset → ((𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑝 ≤ 𝑋 → (𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌)))) |
| 8 | 7 | 3expd 1354 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Poset → (𝑝 ∈ 𝐵 → (𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 → (𝑝 ≤ 𝑋 → (𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌)))))) |
| 9 | 8 | com23 86 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Poset → (𝑋 ∈ 𝐵 → (𝑝 ∈ 𝐵 → (𝑌 ∈ 𝐵 → (𝑝 ≤ 𝑋 → (𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌)))))) |
| 10 | 9 | com34 91 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Poset → (𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 → (𝑝 ∈ 𝐵 → (𝑝 ≤ 𝑋 → (𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌)))))) |
| 11 | 10 | 3imp 1111 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑝 ∈ 𝐵 → (𝑝 ≤ 𝑋 → (𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌)))) |
| 12 | 4, 11 | syl5 34 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑝 ∈ (Atoms‘𝐾) → (𝑝 ≤ 𝑋 → (𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌)))) |
| 13 | 12 | com34 91 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑝 ∈ (Atoms‘𝐾) → (𝑋 ≤ 𝑌 → (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌)))) |
| 14 | 13 | com23 86 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑝 ∈ (Atoms‘𝐾) → (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌)))) |
| 15 | 14 | ralrimdv 3152 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌))) |
| 16 | 1, 15 | syl3an1 1164 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌))) |
| 17 | | ss2rab 4071 |
. . . 4
⊢ ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌} ↔ ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌)) |
| 18 | 16, 17 | imbitrrdi 252 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌})) |
| 19 | | hlclat 39359 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| 20 | | ssrab2 4080 |
. . . . . . . . 9
⊢ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌} ⊆ (Atoms‘𝐾) |
| 21 | 2, 3 | atssbase 39291 |
. . . . . . . . 9
⊢
(Atoms‘𝐾)
⊆ 𝐵 |
| 22 | 20, 21 | sstri 3993 |
. . . . . . . 8
⊢ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌} ⊆ 𝐵 |
| 23 | | eqid 2737 |
. . . . . . . . 9
⊢
(lub‘𝐾) =
(lub‘𝐾) |
| 24 | 2, 5, 23 | lubss 18558 |
. . . . . . . 8
⊢ ((𝐾 ∈ CLat ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌} ⊆ 𝐵 ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) ≤ ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌})) |
| 25 | 22, 24 | mp3an2 1451 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) ≤ ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌})) |
| 26 | 25 | ex 412 |
. . . . . 6
⊢ (𝐾 ∈ CLat → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) ≤ ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}))) |
| 27 | 19, 26 | syl 17 |
. . . . 5
⊢ (𝐾 ∈ HL → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) ≤ ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}))) |
| 28 | 27 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) ≤ ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}))) |
| 29 | | hlomcmat 39366 |
. . . . . . 7
⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| 30 | 29 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| 31 | | simp2 1138 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 32 | 2, 5, 23, 3 | atlatmstc 39320 |
. . . . . 6
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) = 𝑋) |
| 33 | 30, 31, 32 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) = 𝑋) |
| 34 | | simp3 1139 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 35 | 2, 5, 23, 3 | atlatmstc 39320 |
. . . . . 6
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}) = 𝑌) |
| 36 | 30, 34, 35 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}) = 𝑌) |
| 37 | 33, 36 | breq12d 5156 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) ≤ ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}) ↔ 𝑋 ≤ 𝑌)) |
| 38 | 28, 37 | sylibd 239 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌} → 𝑋 ≤ 𝑌)) |
| 39 | 18, 38 | impbid 212 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌})) |
| 40 | | pmaple.m |
. . . . 5
⊢ 𝑀 = (pmap‘𝐾) |
| 41 | 2, 5, 3, 40 | pmapval 39759 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) |
| 42 | 41 | 3adant3 1133 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋}) |
| 43 | 2, 5, 3, 40 | pmapval 39759 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → (𝑀‘𝑌) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}) |
| 44 | 43 | 3adant2 1132 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘𝑌) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌}) |
| 45 | 42, 44 | sseq12d 4017 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑀‘𝑋) ⊆ (𝑀‘𝑌) ↔ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 ≤ 𝑌})) |
| 46 | 39, 45 | bitr4d 282 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑀‘𝑋) ⊆ (𝑀‘𝑌))) |