![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmaplubN | Structured version Visualization version GIF version |
Description: The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmaplub.b | ⊢ 𝐵 = (Base‘𝐾) |
pmaplub.u | ⊢ 𝑈 = (lub‘𝐾) |
pmaplub.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmaplubN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmaplub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2740 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2740 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | pmaplub.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 1, 2, 3, 4 | pmapval 39716 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) |
6 | 5 | fveq2d 6926 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})) |
7 | hlomcmat 39323 | . . 3 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
8 | pmaplub.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
9 | 1, 2, 8, 3 | atlatmstc 39277 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
10 | 7, 9 | sylan 579 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
11 | 6, 10 | eqtrd 2780 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 ‘cfv 6575 Basecbs 17260 lecple 17320 lubclub 18381 CLatccla 18570 OMLcoml 39133 Atomscatm 39221 AtLatcal 39222 HLchlt 39308 pmapcpmap 39456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-proset 18367 df-poset 18385 df-plt 18402 df-lub 18418 df-glb 18419 df-join 18420 df-meet 18421 df-p0 18497 df-lat 18504 df-clat 18571 df-oposet 39134 df-ol 39136 df-oml 39137 df-covers 39224 df-ats 39225 df-atl 39256 df-cvlat 39280 df-hlat 39309 df-pmap 39463 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |