![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmaplubN | Structured version Visualization version GIF version |
Description: The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmaplub.b | ⊢ 𝐵 = (Base‘𝐾) |
pmaplub.u | ⊢ 𝑈 = (lub‘𝐾) |
pmaplub.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmaplubN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmaplub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2734 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2734 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | pmaplub.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 1, 2, 3, 4 | pmapval 39663 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) |
6 | 5 | fveq2d 6923 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})) |
7 | hlomcmat 39270 | . . 3 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
8 | pmaplub.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
9 | 1, 2, 8, 3 | atlatmstc 39224 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
10 | 7, 9 | sylan 579 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
11 | 6, 10 | eqtrd 2774 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2103 {crab 3438 class class class wbr 5169 ‘cfv 6572 Basecbs 17253 lecple 17313 lubclub 18374 CLatccla 18563 OMLcoml 39080 Atomscatm 39168 AtLatcal 39169 HLchlt 39255 pmapcpmap 39403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-proset 18360 df-poset 18378 df-plt 18395 df-lub 18411 df-glb 18412 df-join 18413 df-meet 18414 df-p0 18490 df-lat 18497 df-clat 18564 df-oposet 39081 df-ol 39083 df-oml 39084 df-covers 39171 df-ats 39172 df-atl 39203 df-cvlat 39227 df-hlat 39256 df-pmap 39410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |