![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmaplubN | Structured version Visualization version GIF version |
Description: The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmaplub.b | β’ π΅ = (BaseβπΎ) |
pmaplub.u | β’ π = (lubβπΎ) |
pmaplub.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmaplubN | β’ ((πΎ β HL β§ π β π΅) β (πβ(πβπ)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmaplub.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2732 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
3 | eqid 2732 | . . . 4 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
4 | pmaplub.m | . . . 4 β’ π = (pmapβπΎ) | |
5 | 1, 2, 3, 4 | pmapval 38616 | . . 3 β’ ((πΎ β HL β§ π β π΅) β (πβπ) = {π β (AtomsβπΎ) β£ π(leβπΎ)π}) |
6 | 5 | fveq2d 6892 | . 2 β’ ((πΎ β HL β§ π β π΅) β (πβ(πβπ)) = (πβ{π β (AtomsβπΎ) β£ π(leβπΎ)π})) |
7 | hlomcmat 38223 | . . 3 β’ (πΎ β HL β (πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat)) | |
8 | pmaplub.u | . . . 4 β’ π = (lubβπΎ) | |
9 | 1, 2, 8, 3 | atlatmstc 38177 | . . 3 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ π β π΅) β (πβ{π β (AtomsβπΎ) β£ π(leβπΎ)π}) = π) |
10 | 7, 9 | sylan 580 | . 2 β’ ((πΎ β HL β§ π β π΅) β (πβ{π β (AtomsβπΎ) β£ π(leβπΎ)π}) = π) |
11 | 6, 10 | eqtrd 2772 | 1 β’ ((πΎ β HL β§ π β π΅) β (πβ(πβπ)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5147 βcfv 6540 Basecbs 17140 lecple 17200 lubclub 18258 CLatccla 18447 OMLcoml 38033 Atomscatm 38121 AtLatcal 38122 HLchlt 38208 pmapcpmap 38356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-pmap 38363 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |