![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmaplubN | Structured version Visualization version GIF version |
Description: The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmaplub.b | β’ π΅ = (BaseβπΎ) |
pmaplub.u | β’ π = (lubβπΎ) |
pmaplub.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmaplubN | β’ ((πΎ β HL β§ π β π΅) β (πβ(πβπ)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmaplub.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2731 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
3 | eqid 2731 | . . . 4 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
4 | pmaplub.m | . . . 4 β’ π = (pmapβπΎ) | |
5 | 1, 2, 3, 4 | pmapval 39095 | . . 3 β’ ((πΎ β HL β§ π β π΅) β (πβπ) = {π β (AtomsβπΎ) β£ π(leβπΎ)π}) |
6 | 5 | fveq2d 6895 | . 2 β’ ((πΎ β HL β§ π β π΅) β (πβ(πβπ)) = (πβ{π β (AtomsβπΎ) β£ π(leβπΎ)π})) |
7 | hlomcmat 38702 | . . 3 β’ (πΎ β HL β (πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat)) | |
8 | pmaplub.u | . . . 4 β’ π = (lubβπΎ) | |
9 | 1, 2, 8, 3 | atlatmstc 38656 | . . 3 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ π β π΅) β (πβ{π β (AtomsβπΎ) β£ π(leβπΎ)π}) = π) |
10 | 7, 9 | sylan 579 | . 2 β’ ((πΎ β HL β§ π β π΅) β (πβ{π β (AtomsβπΎ) β£ π(leβπΎ)π}) = π) |
11 | 6, 10 | eqtrd 2771 | 1 β’ ((πΎ β HL β§ π β π΅) β (πβ(πβπ)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 {crab 3431 class class class wbr 5148 βcfv 6543 Basecbs 17151 lecple 17211 lubclub 18272 CLatccla 18461 OMLcoml 38512 Atomscatm 38600 AtLatcal 38601 HLchlt 38687 pmapcpmap 38835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-lat 18395 df-clat 18462 df-oposet 38513 df-ol 38515 df-oml 38516 df-covers 38603 df-ats 38604 df-atl 38635 df-cvlat 38659 df-hlat 38688 df-pmap 38842 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |