| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmaplubN | Structured version Visualization version GIF version | ||
| Description: The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pmaplub.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmaplub.u | ⊢ 𝑈 = (lub‘𝐾) |
| pmaplub.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmaplubN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmaplub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2734 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2734 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 4 | pmaplub.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | 1, 2, 3, 4 | pmapval 39718 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) |
| 6 | 5 | fveq2d 6890 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})) |
| 7 | hlomcmat 39325 | . . 3 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
| 8 | pmaplub.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 9 | 1, 2, 8, 3 | atlatmstc 39279 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
| 10 | 7, 9 | sylan 580 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
| 11 | 6, 10 | eqtrd 2769 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3419 class class class wbr 5123 ‘cfv 6541 Basecbs 17229 lecple 17280 lubclub 18325 CLatccla 18512 OMLcoml 39135 Atomscatm 39223 AtLatcal 39224 HLchlt 39310 pmapcpmap 39458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-lat 18446 df-clat 18513 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-pmap 39465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |