| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlrelat1 | Structured version Visualization version GIF version | ||
| Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32349, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
| Ref | Expression |
|---|---|
| hlrelat1.b | ⊢ 𝐵 = (Base‘𝐾) |
| hlrelat1.l | ⊢ ≤ = (le‘𝐾) |
| hlrelat1.s | ⊢ < = (lt‘𝐾) |
| hlrelat1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlrelat1 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmat 39388 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
| 2 | hlrelat1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | hlrelat1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | hlrelat1.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 5 | hlrelat1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 2, 3, 4, 5 | atlrelat1 39344 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
| 7 | 1, 6 | syl3an1 1163 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 lecple 17283 ltcplt 18325 CLatccla 18513 OMLcoml 39198 Atomscatm 39286 AtLatcal 39287 HLchlt 39373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 |
| This theorem is referenced by: hlrelat5N 39425 hlrelat 39426 hl2at 39429 hlrelat3 39436 cvrexchlem 39443 lhpexle3lem 40035 |
| Copyright terms: Public domain | W3C validator |