Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat1 Structured version   Visualization version   GIF version

Theorem hlrelat1 38266
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 31611, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlrelat1.b 𝐡 = (Baseβ€˜πΎ)
hlrelat1.l ≀ = (leβ€˜πΎ)
hlrelat1.s < = (ltβ€˜πΎ)
hlrelat1.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hlrelat1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)))
Distinct variable groups:   𝐴,𝑝   𝐡,𝑝   𝐾,𝑝   ≀ ,𝑝   𝑋,𝑝   π‘Œ,𝑝
Allowed substitution hint:   < (𝑝)

Proof of Theorem hlrelat1
StepHypRef Expression
1 hlomcmat 38230 . 2 (𝐾 ∈ HL β†’ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
2 hlrelat1.b . . 3 𝐡 = (Baseβ€˜πΎ)
3 hlrelat1.l . . 3 ≀ = (leβ€˜πΎ)
4 hlrelat1.s . . 3 < = (ltβ€˜πΎ)
5 hlrelat1.a . . 3 𝐴 = (Atomsβ€˜πΎ)
62, 3, 4, 5atlrelat1 38186 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)))
71, 6syl3an1 1163 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  Basecbs 17143  lecple 17203  ltcplt 18260  CLatccla 18450  OMLcoml 38040  Atomscatm 38128  AtLatcal 38129  HLchlt 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216
This theorem is referenced by:  hlrelat5N  38267  hlrelat  38268  hl2at  38271  hlrelat3  38278  cvrexchlem  38285  lhpexle3lem  38877
  Copyright terms: Public domain W3C validator