Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polpmapN Structured version   Visualization version   GIF version

Theorem polpmapN 37120
Description: The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polpmap.b 𝐵 = (Base‘𝐾)
polpmap.o = (oc‘𝐾)
polpmap.m 𝑀 = (pmap‘𝐾)
polpmap.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polpmapN ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑃‘(𝑀𝑋)) = (𝑀‘( 𝑋)))

Proof of Theorem polpmapN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 polpmap.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2824 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
3 polpmap.m . . . 4 𝑀 = (pmap‘𝐾)
41, 2, 3pmapssat 36967 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
5 eqid 2824 . . . 4 (lub‘𝐾) = (lub‘𝐾)
6 polpmap.o . . . 4 = (oc‘𝐾)
7 polpmap.p . . . 4 𝑃 = (⊥𝑃𝐾)
85, 6, 2, 3, 7polval2N 37114 . . 3 ((𝐾 ∈ HL ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾)) → (𝑃‘(𝑀𝑋)) = (𝑀‘( ‘((lub‘𝐾)‘(𝑀𝑋)))))
94, 8syldan 594 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑃‘(𝑀𝑋)) = (𝑀‘( ‘((lub‘𝐾)‘(𝑀𝑋)))))
10 eqid 2824 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
111, 10, 2, 3pmapval 36965 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})
1211fveq2d 6663 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((lub‘𝐾)‘(𝑀𝑋)) = ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}))
13 hlomcmat 36573 . . . . . 6 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
141, 10, 5, 2atlatmstc 36527 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋)
1513, 14sylan 583 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋)
1612, 15eqtrd 2859 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((lub‘𝐾)‘(𝑀𝑋)) = 𝑋)
1716fveq2d 6663 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘((lub‘𝐾)‘(𝑀𝑋))) = ( 𝑋))
1817fveq2d 6663 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀‘( ‘((lub‘𝐾)‘(𝑀𝑋)))) = (𝑀‘( 𝑋)))
199, 18eqtrd 2859 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑃‘(𝑀𝑋)) = (𝑀‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  {crab 3137  wss 3919   class class class wbr 5053  cfv 6344  Basecbs 16481  lecple 16570  occoc 16571  lubclub 17550  CLatccla 17715  OMLcoml 36383  Atomscatm 36471  AtLatcal 36472  HLchlt 36558  pmapcpmap 36705  𝑃cpolN 37110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-riotaBAD 36161
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-undef 7931  df-proset 17536  df-poset 17554  df-plt 17566  df-lub 17582  df-glb 17583  df-join 17584  df-meet 17585  df-p0 17647  df-p1 17648  df-lat 17654  df-clat 17716  df-oposet 36384  df-ol 36386  df-oml 36387  df-covers 36474  df-ats 36475  df-atl 36506  df-cvlat 36530  df-hlat 36559  df-pmap 36712  df-polarityN 37111
This theorem is referenced by:  2polpmapN  37121  2polvalN  37122  3polN  37124  pmapj2N  37137  pmapocjN  37138  2polatN  37140  poml4N  37161  pmapojoinN  37176
  Copyright terms: Public domain W3C validator