![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polpmapN | Structured version Visualization version GIF version |
Description: The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polpmap.b | ⊢ 𝐵 = (Base‘𝐾) |
polpmap.o | ⊢ ⊥ = (oc‘𝐾) |
polpmap.m | ⊢ 𝑀 = (pmap‘𝐾) |
polpmap.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polpmapN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polpmap.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2825 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | polpmap.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
4 | 1, 2, 3 | pmapssat 35829 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
5 | eqid 2825 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
6 | polpmap.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
7 | polpmap.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
8 | 5, 6, 2, 3, 7 | polval2N 35976 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
9 | 4, 8 | syldan 585 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
10 | eqid 2825 | . . . . . . 7 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | 1, 10, 2, 3 | pmapval 35827 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) |
12 | 11 | fveq2d 6441 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})) |
13 | hlomcmat 35435 | . . . . . 6 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
14 | 1, 10, 5, 2 | atlatmstc 35389 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
15 | 13, 14 | sylan 575 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
16 | 12, 15 | eqtrd 2861 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = 𝑋) |
17 | 16 | fveq2d 6441 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))) = ( ⊥ ‘𝑋)) |
18 | 17 | fveq2d 6441 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋)))) = (𝑀‘( ⊥ ‘𝑋))) |
19 | 9, 18 | eqtrd 2861 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 {crab 3121 ⊆ wss 3798 class class class wbr 4875 ‘cfv 6127 Basecbs 16229 lecple 16319 occoc 16320 lubclub 17302 CLatccla 17467 OMLcoml 35245 Atomscatm 35333 AtLatcal 35334 HLchlt 35420 pmapcpmap 35567 ⊥𝑃cpolN 35972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-riotaBAD 35023 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-undef 7669 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-oposet 35246 df-ol 35248 df-oml 35249 df-covers 35336 df-ats 35337 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-pmap 35574 df-polarityN 35973 |
This theorem is referenced by: 2polpmapN 35983 2polvalN 35984 3polN 35986 pmapj2N 35999 pmapocjN 36000 2polatN 36002 poml4N 36023 pmapojoinN 36038 |
Copyright terms: Public domain | W3C validator |