| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polpmapN | Structured version Visualization version GIF version | ||
| Description: The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polpmap.b | ⊢ 𝐵 = (Base‘𝐾) |
| polpmap.o | ⊢ ⊥ = (oc‘𝐾) |
| polpmap.m | ⊢ 𝑀 = (pmap‘𝐾) |
| polpmap.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polpmapN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polpmap.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | polpmap.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 4 | 1, 2, 3 | pmapssat 39857 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
| 5 | eqid 2731 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 6 | polpmap.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 7 | polpmap.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 8 | 5, 6, 2, 3, 7 | polval2N 40004 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
| 9 | 4, 8 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
| 10 | eqid 2731 | . . . . . . 7 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 11 | 1, 10, 2, 3 | pmapval 39855 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) |
| 12 | 11 | fveq2d 6826 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})) |
| 13 | hlomcmat 39463 | . . . . . 6 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
| 14 | 1, 10, 5, 2 | atlatmstc 39417 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
| 15 | 13, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
| 16 | 12, 15 | eqtrd 2766 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = 𝑋) |
| 17 | 16 | fveq2d 6826 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))) = ( ⊥ ‘𝑋)) |
| 18 | 17 | fveq2d 6826 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋)))) = (𝑀‘( ⊥ ‘𝑋))) |
| 19 | 9, 18 | eqtrd 2766 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 occoc 17169 lubclub 18215 CLatccla 18404 OMLcoml 39273 Atomscatm 39361 AtLatcal 39362 HLchlt 39448 pmapcpmap 39595 ⊥𝑃cpolN 40000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39274 df-ol 39276 df-oml 39277 df-covers 39364 df-ats 39365 df-atl 39396 df-cvlat 39420 df-hlat 39449 df-pmap 39602 df-polarityN 40001 |
| This theorem is referenced by: 2polpmapN 40011 2polvalN 40012 3polN 40014 pmapj2N 40027 pmapocjN 40028 2polatN 40030 poml4N 40051 pmapojoinN 40066 |
| Copyright terms: Public domain | W3C validator |