| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polpmapN | Structured version Visualization version GIF version | ||
| Description: The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polpmap.b | ⊢ 𝐵 = (Base‘𝐾) |
| polpmap.o | ⊢ ⊥ = (oc‘𝐾) |
| polpmap.m | ⊢ 𝑀 = (pmap‘𝐾) |
| polpmap.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polpmapN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polpmap.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | polpmap.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 4 | 1, 2, 3 | pmapssat 39758 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
| 5 | eqid 2729 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 6 | polpmap.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 7 | polpmap.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 8 | 5, 6, 2, 3, 7 | polval2N 39905 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
| 9 | 4, 8 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 11 | 1, 10, 2, 3 | pmapval 39756 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) |
| 12 | 11 | fveq2d 6826 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})) |
| 13 | hlomcmat 39364 | . . . . . 6 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
| 14 | 1, 10, 5, 2 | atlatmstc 39318 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
| 15 | 13, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
| 16 | 12, 15 | eqtrd 2764 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = 𝑋) |
| 17 | 16 | fveq2d 6826 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))) = ( ⊥ ‘𝑋)) |
| 18 | 17 | fveq2d 6826 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋)))) = (𝑀‘( ⊥ ‘𝑋))) |
| 19 | 9, 18 | eqtrd 2764 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 lecple 17168 occoc 17169 lubclub 18215 CLatccla 18404 OMLcoml 39174 Atomscatm 39262 AtLatcal 39263 HLchlt 39349 pmapcpmap 39496 ⊥𝑃cpolN 39901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39175 df-ol 39177 df-oml 39178 df-covers 39265 df-ats 39266 df-atl 39297 df-cvlat 39321 df-hlat 39350 df-pmap 39503 df-polarityN 39902 |
| This theorem is referenced by: 2polpmapN 39912 2polvalN 39913 3polN 39915 pmapj2N 39928 pmapocjN 39929 2polatN 39931 poml4N 39952 pmapojoinN 39967 |
| Copyright terms: Public domain | W3C validator |