| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polpmapN | Structured version Visualization version GIF version | ||
| Description: The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polpmap.b | ⊢ 𝐵 = (Base‘𝐾) |
| polpmap.o | ⊢ ⊥ = (oc‘𝐾) |
| polpmap.m | ⊢ 𝑀 = (pmap‘𝐾) |
| polpmap.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polpmapN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polpmap.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | polpmap.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 4 | 1, 2, 3 | pmapssat 39783 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
| 5 | eqid 2736 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 6 | polpmap.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 7 | polpmap.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 8 | 5, 6, 2, 3, 7 | polval2N 39930 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
| 9 | 4, 8 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
| 10 | eqid 2736 | . . . . . . 7 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 11 | 1, 10, 2, 3 | pmapval 39781 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) |
| 12 | 11 | fveq2d 6885 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})) |
| 13 | hlomcmat 39388 | . . . . . 6 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
| 14 | 1, 10, 5, 2 | atlatmstc 39342 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
| 15 | 13, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
| 16 | 12, 15 | eqtrd 2771 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = 𝑋) |
| 17 | 16 | fveq2d 6885 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))) = ( ⊥ ‘𝑋)) |
| 18 | 17 | fveq2d 6885 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋)))) = (𝑀‘( ⊥ ‘𝑋))) |
| 19 | 9, 18 | eqtrd 2771 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 lecple 17283 occoc 17284 lubclub 18326 CLatccla 18513 OMLcoml 39198 Atomscatm 39286 AtLatcal 39287 HLchlt 39373 pmapcpmap 39521 ⊥𝑃cpolN 39926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-pmap 39528 df-polarityN 39927 |
| This theorem is referenced by: 2polpmapN 39937 2polvalN 39938 3polN 39940 pmapj2N 39953 pmapocjN 39954 2polatN 39956 poml4N 39977 pmapojoinN 39992 |
| Copyright terms: Public domain | W3C validator |