| Step | Hyp | Ref
| Expression |
| 1 | | ssid 3988 |
. . 3
⊢ 𝐴 ⊆ 𝐴 |
| 2 | | eqid 2734 |
. . . 4
⊢
(lub‘𝐾) =
(lub‘𝐾) |
| 3 | | eqid 2734 |
. . . 4
⊢
(oc‘𝐾) =
(oc‘𝐾) |
| 4 | | polssat.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | | eqid 2734 |
. . . 4
⊢
(pmap‘𝐾) =
(pmap‘𝐾) |
| 6 | | polssat.p |
. . . 4
⊢ ⊥ =
(⊥𝑃‘𝐾) |
| 7 | 2, 3, 4, 5, 6 | polval2N 39849 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝐴 ⊆ 𝐴) → ( ⊥ ‘𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))) |
| 8 | 1, 7 | mpan2 691 |
. 2
⊢ (𝐾 ∈ HL → ( ⊥
‘𝐴) =
((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))) |
| 9 | | hlop 39304 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| 10 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 11 | 10, 4 | atbase 39231 |
. . . . . . . . . 10
⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
| 12 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(le‘𝐾) =
(le‘𝐾) |
| 13 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(1.‘𝐾) =
(1.‘𝐾) |
| 14 | 10, 12, 13 | ople1 39133 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾)(1.‘𝐾)) |
| 15 | 9, 11, 14 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾)(1.‘𝐾)) |
| 16 | 15 | ralrimiva 3133 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾)(1.‘𝐾)) |
| 17 | | rabid2 3454 |
. . . . . . . 8
⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)} ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾)(1.‘𝐾)) |
| 18 | 16, 17 | sylibr 234 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) |
| 19 | 18 | fveq2d 6891 |
. . . . . 6
⊢ (𝐾 ∈ HL →
((lub‘𝐾)‘𝐴) = ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)})) |
| 20 | | hlomcmat 39307 |
. . . . . . 7
⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| 21 | 10, 13 | op1cl 39127 |
. . . . . . . 8
⊢ (𝐾 ∈ OP →
(1.‘𝐾) ∈
(Base‘𝐾)) |
| 22 | 9, 21 | syl 17 |
. . . . . . 7
⊢ (𝐾 ∈ HL →
(1.‘𝐾) ∈
(Base‘𝐾)) |
| 23 | 10, 12, 2, 4 | atlatmstc 39261 |
. . . . . . 7
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧
(1.‘𝐾) ∈
(Base‘𝐾)) →
((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾)) |
| 24 | 20, 22, 23 | syl2anc 584 |
. . . . . 6
⊢ (𝐾 ∈ HL →
((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾)) |
| 25 | 19, 24 | eqtr2d 2770 |
. . . . 5
⊢ (𝐾 ∈ HL →
(1.‘𝐾) =
((lub‘𝐾)‘𝐴)) |
| 26 | 25 | fveq2d 6891 |
. . . 4
⊢ (𝐾 ∈ HL →
((oc‘𝐾)‘(1.‘𝐾)) = ((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) |
| 27 | | eqid 2734 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 28 | 27, 13, 3 | opoc1 39144 |
. . . . 5
⊢ (𝐾 ∈ OP →
((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾)) |
| 29 | 9, 28 | syl 17 |
. . . 4
⊢ (𝐾 ∈ HL →
((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾)) |
| 30 | 26, 29 | eqtr3d 2771 |
. . 3
⊢ (𝐾 ∈ HL →
((oc‘𝐾)‘((lub‘𝐾)‘𝐴)) = (0.‘𝐾)) |
| 31 | 30 | fveq2d 6891 |
. 2
⊢ (𝐾 ∈ HL →
((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) = ((pmap‘𝐾)‘(0.‘𝐾))) |
| 32 | | hlatl 39302 |
. . 3
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 33 | 27, 5 | pmap0 39708 |
. . 3
⊢ (𝐾 ∈ AtLat →
((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
| 34 | 32, 33 | syl 17 |
. 2
⊢ (𝐾 ∈ HL →
((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
| 35 | 8, 31, 34 | 3eqtrd 2773 |
1
⊢ (𝐾 ∈ HL → ( ⊥
‘𝐴) =
∅) |