Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol1N Structured version   Visualization version   GIF version

Theorem pol1N 39853
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
pol1N (𝐾 ∈ HL → ( 𝐴) = ∅)

Proof of Theorem pol1N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ssid 3988 . . 3 𝐴𝐴
2 eqid 2734 . . . 4 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2734 . . . 4 (oc‘𝐾) = (oc‘𝐾)
4 polssat.a . . . 4 𝐴 = (Atoms‘𝐾)
5 eqid 2734 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
6 polssat.p . . . 4 = (⊥𝑃𝐾)
72, 3, 4, 5, 6polval2N 39849 . . 3 ((𝐾 ∈ HL ∧ 𝐴𝐴) → ( 𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))))
81, 7mpan2 691 . 2 (𝐾 ∈ HL → ( 𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))))
9 hlop 39304 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
10 eqid 2734 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
1110, 4atbase 39231 . . . . . . . . . 10 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
12 eqid 2734 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
13 eqid 2734 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
1410, 12, 13ople1 39133 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾)(1.‘𝐾))
159, 11, 14syl2an 596 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴) → 𝑝(le‘𝐾)(1.‘𝐾))
1615ralrimiva 3133 . . . . . . . 8 (𝐾 ∈ HL → ∀𝑝𝐴 𝑝(le‘𝐾)(1.‘𝐾))
17 rabid2 3454 . . . . . . . 8 (𝐴 = {𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)} ↔ ∀𝑝𝐴 𝑝(le‘𝐾)(1.‘𝐾))
1816, 17sylibr 234 . . . . . . 7 (𝐾 ∈ HL → 𝐴 = {𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)})
1918fveq2d 6891 . . . . . 6 (𝐾 ∈ HL → ((lub‘𝐾)‘𝐴) = ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}))
20 hlomcmat 39307 . . . . . . 7 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
2110, 13op1cl 39127 . . . . . . . 8 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
229, 21syl 17 . . . . . . 7 (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾))
2310, 12, 2, 4atlatmstc 39261 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾))
2420, 22, 23syl2anc 584 . . . . . 6 (𝐾 ∈ HL → ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾))
2519, 24eqtr2d 2770 . . . . 5 (𝐾 ∈ HL → (1.‘𝐾) = ((lub‘𝐾)‘𝐴))
2625fveq2d 6891 . . . 4 (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))
27 eqid 2734 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
2827, 13, 3opoc1 39144 . . . . 5 (𝐾 ∈ OP → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾))
299, 28syl 17 . . . 4 (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾))
3026, 29eqtr3d 2771 . . 3 (𝐾 ∈ HL → ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)) = (0.‘𝐾))
3130fveq2d 6891 . 2 (𝐾 ∈ HL → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) = ((pmap‘𝐾)‘(0.‘𝐾)))
32 hlatl 39302 . . 3 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3327, 5pmap0 39708 . . 3 (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3432, 33syl 17 . 2 (𝐾 ∈ HL → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
358, 31, 343eqtrd 2773 1 (𝐾 ∈ HL → ( 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wral 3050  {crab 3420  wss 3933  c0 4315   class class class wbr 5125  cfv 6542  Basecbs 17230  lecple 17284  occoc 17285  lubclub 18330  0.cp0 18442  1.cp1 18443  CLatccla 18517  OPcops 39114  OMLcoml 39117  Atomscatm 39205  AtLatcal 39206  HLchlt 39292  pmapcpmap 39440  𝑃cpolN 39845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-pmap 39447  df-polarityN 39846
This theorem is referenced by:  2pol0N  39854  1psubclN  39887
  Copyright terms: Public domain W3C validator