Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol1N Structured version   Visualization version   GIF version

Theorem pol1N 37924
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
pol1N (𝐾 ∈ HL → ( 𝐴) = ∅)

Proof of Theorem pol1N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ssid 3943 . . 3 𝐴𝐴
2 eqid 2738 . . . 4 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2738 . . . 4 (oc‘𝐾) = (oc‘𝐾)
4 polssat.a . . . 4 𝐴 = (Atoms‘𝐾)
5 eqid 2738 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
6 polssat.p . . . 4 = (⊥𝑃𝐾)
72, 3, 4, 5, 6polval2N 37920 . . 3 ((𝐾 ∈ HL ∧ 𝐴𝐴) → ( 𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))))
81, 7mpan2 688 . 2 (𝐾 ∈ HL → ( 𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))))
9 hlop 37376 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
10 eqid 2738 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
1110, 4atbase 37303 . . . . . . . . . 10 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
12 eqid 2738 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
13 eqid 2738 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
1410, 12, 13ople1 37205 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾)(1.‘𝐾))
159, 11, 14syl2an 596 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴) → 𝑝(le‘𝐾)(1.‘𝐾))
1615ralrimiva 3103 . . . . . . . 8 (𝐾 ∈ HL → ∀𝑝𝐴 𝑝(le‘𝐾)(1.‘𝐾))
17 rabid2 3314 . . . . . . . 8 (𝐴 = {𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)} ↔ ∀𝑝𝐴 𝑝(le‘𝐾)(1.‘𝐾))
1816, 17sylibr 233 . . . . . . 7 (𝐾 ∈ HL → 𝐴 = {𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)})
1918fveq2d 6778 . . . . . 6 (𝐾 ∈ HL → ((lub‘𝐾)‘𝐴) = ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}))
20 hlomcmat 37379 . . . . . . 7 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
2110, 13op1cl 37199 . . . . . . . 8 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
229, 21syl 17 . . . . . . 7 (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾))
2310, 12, 2, 4atlatmstc 37333 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾))
2420, 22, 23syl2anc 584 . . . . . 6 (𝐾 ∈ HL → ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾))
2519, 24eqtr2d 2779 . . . . 5 (𝐾 ∈ HL → (1.‘𝐾) = ((lub‘𝐾)‘𝐴))
2625fveq2d 6778 . . . 4 (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))
27 eqid 2738 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
2827, 13, 3opoc1 37216 . . . . 5 (𝐾 ∈ OP → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾))
299, 28syl 17 . . . 4 (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾))
3026, 29eqtr3d 2780 . . 3 (𝐾 ∈ HL → ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)) = (0.‘𝐾))
3130fveq2d 6778 . 2 (𝐾 ∈ HL → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) = ((pmap‘𝐾)‘(0.‘𝐾)))
32 hlatl 37374 . . 3 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3327, 5pmap0 37779 . . 3 (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3432, 33syl 17 . 2 (𝐾 ∈ HL → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
358, 31, 343eqtrd 2782 1 (𝐾 ∈ HL → ( 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  wss 3887  c0 4256   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  occoc 16970  lubclub 18027  0.cp0 18141  1.cp1 18142  CLatccla 18216  OPcops 37186  OMLcoml 37189  Atomscatm 37277  AtLatcal 37278  HLchlt 37364  pmapcpmap 37511  𝑃cpolN 37916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-pmap 37518  df-polarityN 37917
This theorem is referenced by:  2pol0N  37925  1psubclN  37958
  Copyright terms: Public domain W3C validator