Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pol1N | Structured version Visualization version GIF version |
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pol1N | ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | eqid 2738 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | eqid 2738 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
4 | polssat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | eqid 2738 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
6 | polssat.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
7 | 2, 3, 4, 5, 6 | polval2N 37920 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝐴 ⊆ 𝐴) → ( ⊥ ‘𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))) |
8 | 1, 7 | mpan2 688 | . 2 ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))) |
9 | hlop 37376 | . . . . . . . . . 10 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | 10, 4 | atbase 37303 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
12 | eqid 2738 | . . . . . . . . . . 11 ⊢ (le‘𝐾) = (le‘𝐾) | |
13 | eqid 2738 | . . . . . . . . . . 11 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
14 | 10, 12, 13 | ople1 37205 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾)(1.‘𝐾)) |
15 | 9, 11, 14 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾)(1.‘𝐾)) |
16 | 15 | ralrimiva 3103 | . . . . . . . 8 ⊢ (𝐾 ∈ HL → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾)(1.‘𝐾)) |
17 | rabid2 3314 | . . . . . . . 8 ⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)} ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾)(1.‘𝐾)) | |
18 | 16, 17 | sylibr 233 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) |
19 | 18 | fveq2d 6778 | . . . . . 6 ⊢ (𝐾 ∈ HL → ((lub‘𝐾)‘𝐴) = ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)})) |
20 | hlomcmat 37379 | . . . . . . 7 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
21 | 10, 13 | op1cl 37199 | . . . . . . . 8 ⊢ (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾)) |
22 | 9, 21 | syl 17 | . . . . . . 7 ⊢ (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾)) |
23 | 10, 12, 2, 4 | atlatmstc 37333 | . . . . . . 7 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾)) |
24 | 20, 22, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝐾 ∈ HL → ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾)) |
25 | 19, 24 | eqtr2d 2779 | . . . . 5 ⊢ (𝐾 ∈ HL → (1.‘𝐾) = ((lub‘𝐾)‘𝐴)) |
26 | 25 | fveq2d 6778 | . . . 4 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = ((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) |
27 | eqid 2738 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
28 | 27, 13, 3 | opoc1 37216 | . . . . 5 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾)) |
29 | 9, 28 | syl 17 | . . . 4 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾)) |
30 | 26, 29 | eqtr3d 2780 | . . 3 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)) = (0.‘𝐾)) |
31 | 30 | fveq2d 6778 | . 2 ⊢ (𝐾 ∈ HL → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) = ((pmap‘𝐾)‘(0.‘𝐾))) |
32 | hlatl 37374 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
33 | 27, 5 | pmap0 37779 | . . 3 ⊢ (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
34 | 32, 33 | syl 17 | . 2 ⊢ (𝐾 ∈ HL → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
35 | 8, 31, 34 | 3eqtrd 2782 | 1 ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 occoc 16970 lubclub 18027 0.cp0 18141 1.cp1 18142 CLatccla 18216 OPcops 37186 OMLcoml 37189 Atomscatm 37277 AtLatcal 37278 HLchlt 37364 pmapcpmap 37511 ⊥𝑃cpolN 37916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-undef 8089 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-pmap 37518 df-polarityN 37917 |
This theorem is referenced by: 2pol0N 37925 1psubclN 37958 |
Copyright terms: Public domain | W3C validator |