Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol1N Structured version   Visualization version   GIF version

Theorem pol1N 39510
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
pol1N (𝐾 ∈ HL → ( 𝐴) = ∅)

Proof of Theorem pol1N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ssid 3999 . . 3 𝐴𝐴
2 eqid 2725 . . . 4 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2725 . . . 4 (oc‘𝐾) = (oc‘𝐾)
4 polssat.a . . . 4 𝐴 = (Atoms‘𝐾)
5 eqid 2725 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
6 polssat.p . . . 4 = (⊥𝑃𝐾)
72, 3, 4, 5, 6polval2N 39506 . . 3 ((𝐾 ∈ HL ∧ 𝐴𝐴) → ( 𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))))
81, 7mpan2 689 . 2 (𝐾 ∈ HL → ( 𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))))
9 hlop 38961 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
10 eqid 2725 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
1110, 4atbase 38888 . . . . . . . . . 10 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
12 eqid 2725 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
13 eqid 2725 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
1410, 12, 13ople1 38790 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾)(1.‘𝐾))
159, 11, 14syl2an 594 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴) → 𝑝(le‘𝐾)(1.‘𝐾))
1615ralrimiva 3135 . . . . . . . 8 (𝐾 ∈ HL → ∀𝑝𝐴 𝑝(le‘𝐾)(1.‘𝐾))
17 rabid2 3452 . . . . . . . 8 (𝐴 = {𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)} ↔ ∀𝑝𝐴 𝑝(le‘𝐾)(1.‘𝐾))
1816, 17sylibr 233 . . . . . . 7 (𝐾 ∈ HL → 𝐴 = {𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)})
1918fveq2d 6900 . . . . . 6 (𝐾 ∈ HL → ((lub‘𝐾)‘𝐴) = ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}))
20 hlomcmat 38964 . . . . . . 7 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
2110, 13op1cl 38784 . . . . . . . 8 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
229, 21syl 17 . . . . . . 7 (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾))
2310, 12, 2, 4atlatmstc 38918 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾))
2420, 22, 23syl2anc 582 . . . . . 6 (𝐾 ∈ HL → ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾))
2519, 24eqtr2d 2766 . . . . 5 (𝐾 ∈ HL → (1.‘𝐾) = ((lub‘𝐾)‘𝐴))
2625fveq2d 6900 . . . 4 (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))
27 eqid 2725 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
2827, 13, 3opoc1 38801 . . . . 5 (𝐾 ∈ OP → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾))
299, 28syl 17 . . . 4 (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾))
3026, 29eqtr3d 2767 . . 3 (𝐾 ∈ HL → ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)) = (0.‘𝐾))
3130fveq2d 6900 . 2 (𝐾 ∈ HL → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) = ((pmap‘𝐾)‘(0.‘𝐾)))
32 hlatl 38959 . . 3 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3327, 5pmap0 39365 . . 3 (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3432, 33syl 17 . 2 (𝐾 ∈ HL → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
358, 31, 343eqtrd 2769 1 (𝐾 ∈ HL → ( 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wral 3050  {crab 3418  wss 3944  c0 4322   class class class wbr 5149  cfv 6549  Basecbs 17183  lecple 17243  occoc 17244  lubclub 18304  0.cp0 18418  1.cp1 18419  CLatccla 18493  OPcops 38771  OMLcoml 38774  Atomscatm 38862  AtLatcal 38863  HLchlt 38949  pmapcpmap 39097  𝑃cpolN 39502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-oposet 38775  df-ol 38777  df-oml 38778  df-covers 38865  df-ats 38866  df-atl 38897  df-cvlat 38921  df-hlat 38950  df-pmap 39104  df-polarityN 39503
This theorem is referenced by:  2pol0N  39511  1psubclN  39544
  Copyright terms: Public domain W3C validator