Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol1N Structured version   Visualization version   GIF version

Theorem pol1N 39245
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atomsβ€˜πΎ)
polssat.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pol1N (𝐾 ∈ HL β†’ ( βŠ₯ β€˜π΄) = βˆ…)

Proof of Theorem pol1N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ssid 4004 . . 3 𝐴 βŠ† 𝐴
2 eqid 2731 . . . 4 (lubβ€˜πΎ) = (lubβ€˜πΎ)
3 eqid 2731 . . . 4 (ocβ€˜πΎ) = (ocβ€˜πΎ)
4 polssat.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
5 eqid 2731 . . . 4 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
6 polssat.p . . . 4 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
72, 3, 4, 5, 6polval2N 39241 . . 3 ((𝐾 ∈ HL ∧ 𝐴 βŠ† 𝐴) β†’ ( βŠ₯ β€˜π΄) = ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π΄))))
81, 7mpan2 688 . 2 (𝐾 ∈ HL β†’ ( βŠ₯ β€˜π΄) = ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π΄))))
9 hlop 38696 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
10 eqid 2731 . . . . . . . . . . 11 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1110, 4atbase 38623 . . . . . . . . . 10 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ (Baseβ€˜πΎ))
12 eqid 2731 . . . . . . . . . . 11 (leβ€˜πΎ) = (leβ€˜πΎ)
13 eqid 2731 . . . . . . . . . . 11 (1.β€˜πΎ) = (1.β€˜πΎ)
1410, 12, 13ople1 38525 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Baseβ€˜πΎ)) β†’ 𝑝(leβ€˜πΎ)(1.β€˜πΎ))
159, 11, 14syl2an 595 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴) β†’ 𝑝(leβ€˜πΎ)(1.β€˜πΎ))
1615ralrimiva 3145 . . . . . . . 8 (𝐾 ∈ HL β†’ βˆ€π‘ ∈ 𝐴 𝑝(leβ€˜πΎ)(1.β€˜πΎ))
17 rabid2 3463 . . . . . . . 8 (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)(1.β€˜πΎ)} ↔ βˆ€π‘ ∈ 𝐴 𝑝(leβ€˜πΎ)(1.β€˜πΎ))
1816, 17sylibr 233 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)(1.β€˜πΎ)})
1918fveq2d 6895 . . . . . 6 (𝐾 ∈ HL β†’ ((lubβ€˜πΎ)β€˜π΄) = ((lubβ€˜πΎ)β€˜{𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)(1.β€˜πΎ)}))
20 hlomcmat 38699 . . . . . . 7 (𝐾 ∈ HL β†’ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
2110, 13op1cl 38519 . . . . . . . 8 (𝐾 ∈ OP β†’ (1.β€˜πΎ) ∈ (Baseβ€˜πΎ))
229, 21syl 17 . . . . . . 7 (𝐾 ∈ HL β†’ (1.β€˜πΎ) ∈ (Baseβ€˜πΎ))
2310, 12, 2, 4atlatmstc 38653 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (1.β€˜πΎ) ∈ (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜{𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)(1.β€˜πΎ)}) = (1.β€˜πΎ))
2420, 22, 23syl2anc 583 . . . . . 6 (𝐾 ∈ HL β†’ ((lubβ€˜πΎ)β€˜{𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)(1.β€˜πΎ)}) = (1.β€˜πΎ))
2519, 24eqtr2d 2772 . . . . 5 (𝐾 ∈ HL β†’ (1.β€˜πΎ) = ((lubβ€˜πΎ)β€˜π΄))
2625fveq2d 6895 . . . 4 (𝐾 ∈ HL β†’ ((ocβ€˜πΎ)β€˜(1.β€˜πΎ)) = ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π΄)))
27 eqid 2731 . . . . . 6 (0.β€˜πΎ) = (0.β€˜πΎ)
2827, 13, 3opoc1 38536 . . . . 5 (𝐾 ∈ OP β†’ ((ocβ€˜πΎ)β€˜(1.β€˜πΎ)) = (0.β€˜πΎ))
299, 28syl 17 . . . 4 (𝐾 ∈ HL β†’ ((ocβ€˜πΎ)β€˜(1.β€˜πΎ)) = (0.β€˜πΎ))
3026, 29eqtr3d 2773 . . 3 (𝐾 ∈ HL β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π΄)) = (0.β€˜πΎ))
3130fveq2d 6895 . 2 (𝐾 ∈ HL β†’ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π΄))) = ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)))
32 hlatl 38694 . . 3 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
3327, 5pmap0 39100 . . 3 (𝐾 ∈ AtLat β†’ ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)) = βˆ…)
3432, 33syl 17 . 2 (𝐾 ∈ HL β†’ ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)) = βˆ…)
358, 31, 343eqtrd 2775 1 (𝐾 ∈ HL β†’ ( βŠ₯ β€˜π΄) = βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431   βŠ† wss 3948  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  Basecbs 17151  lecple 17211  occoc 17212  lubclub 18272  0.cp0 18386  1.cp1 18387  CLatccla 18461  OPcops 38506  OMLcoml 38509  Atomscatm 38597  AtLatcal 38598  HLchlt 38684  pmapcpmap 38832  βŠ₯𝑃cpolN 39237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38510  df-ol 38512  df-oml 38513  df-covers 38600  df-ats 38601  df-atl 38632  df-cvlat 38656  df-hlat 38685  df-pmap 38839  df-polarityN 39238
This theorem is referenced by:  2pol0N  39246  1psubclN  39279
  Copyright terms: Public domain W3C validator