Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pol1N | Structured version Visualization version GIF version |
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pol1N | ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | eqid 2738 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | eqid 2738 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
4 | polssat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | eqid 2738 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
6 | polssat.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
7 | 2, 3, 4, 5, 6 | polval2N 37847 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝐴 ⊆ 𝐴) → ( ⊥ ‘𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))) |
8 | 1, 7 | mpan2 687 | . 2 ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))) |
9 | hlop 37303 | . . . . . . . . . 10 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | 10, 4 | atbase 37230 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
12 | eqid 2738 | . . . . . . . . . . 11 ⊢ (le‘𝐾) = (le‘𝐾) | |
13 | eqid 2738 | . . . . . . . . . . 11 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
14 | 10, 12, 13 | ople1 37132 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾)(1.‘𝐾)) |
15 | 9, 11, 14 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾)(1.‘𝐾)) |
16 | 15 | ralrimiva 3107 | . . . . . . . 8 ⊢ (𝐾 ∈ HL → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾)(1.‘𝐾)) |
17 | rabid2 3307 | . . . . . . . 8 ⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)} ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾)(1.‘𝐾)) | |
18 | 16, 17 | sylibr 233 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) |
19 | 18 | fveq2d 6760 | . . . . . 6 ⊢ (𝐾 ∈ HL → ((lub‘𝐾)‘𝐴) = ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)})) |
20 | hlomcmat 37306 | . . . . . . 7 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
21 | 10, 13 | op1cl 37126 | . . . . . . . 8 ⊢ (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾)) |
22 | 9, 21 | syl 17 | . . . . . . 7 ⊢ (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾)) |
23 | 10, 12, 2, 4 | atlatmstc 37260 | . . . . . . 7 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾)) |
24 | 20, 22, 23 | syl2anc 583 | . . . . . 6 ⊢ (𝐾 ∈ HL → ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾)) |
25 | 19, 24 | eqtr2d 2779 | . . . . 5 ⊢ (𝐾 ∈ HL → (1.‘𝐾) = ((lub‘𝐾)‘𝐴)) |
26 | 25 | fveq2d 6760 | . . . 4 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = ((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) |
27 | eqid 2738 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
28 | 27, 13, 3 | opoc1 37143 | . . . . 5 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾)) |
29 | 9, 28 | syl 17 | . . . 4 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾)) |
30 | 26, 29 | eqtr3d 2780 | . . 3 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)) = (0.‘𝐾)) |
31 | 30 | fveq2d 6760 | . 2 ⊢ (𝐾 ∈ HL → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) = ((pmap‘𝐾)‘(0.‘𝐾))) |
32 | hlatl 37301 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
33 | 27, 5 | pmap0 37706 | . . 3 ⊢ (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
34 | 32, 33 | syl 17 | . 2 ⊢ (𝐾 ∈ HL → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
35 | 8, 31, 34 | 3eqtrd 2782 | 1 ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 occoc 16896 lubclub 17942 0.cp0 18056 1.cp1 18057 CLatccla 18131 OPcops 37113 OMLcoml 37116 Atomscatm 37204 AtLatcal 37205 HLchlt 37291 pmapcpmap 37438 ⊥𝑃cpolN 37843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-undef 8060 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-pmap 37445 df-polarityN 37844 |
This theorem is referenced by: 2pol0N 37852 1psubclN 37885 |
Copyright terms: Public domain | W3C validator |