Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hllatd | Structured version Visualization version GIF version |
Description: Deduction form of hllat 37384. A Hilbert lattice is a lattice. (Contributed by BJ, 14-Aug-2022.) |
Ref | Expression |
---|---|
hllatd.1 | ⊢ (𝜑 → 𝐾 ∈ HL) |
Ref | Expression |
---|---|
hllatd | ⊢ (𝜑 → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllatd.1 | . 2 ⊢ (𝜑 → 𝐾 ∈ HL) | |
2 | hllat 37384 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐾 ∈ Lat) |
Copyright terms: Public domain | W3C validator |