Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithidomlem1 Structured version   Visualization version   GIF version

Theorem 1arithidomlem1 33347
Description: Lemma for 1arithidom 33349. (Contributed by Thierry Arnoux, 30-May-2025.)
Hypotheses
Ref Expression
1arithidom.u 𝑈 = (Unit‘𝑅)
1arithidom.i 𝑃 = (RPrime‘𝑅)
1arithidom.m 𝑀 = (mulGrp‘𝑅)
1arithidom.t · = (.r𝑅)
1arithidom.j 𝐽 = (0..^(♯‘𝐹))
1arithidom.r (𝜑𝑅 ∈ IDomn)
1arithidom.f (𝜑𝐹 ∈ Word 𝑃)
1arithidom.g (𝜑𝐺 ∈ Word 𝑃)
1arithidom.1 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))
1arithidomlem.1 (𝜑𝑄𝑃)
1arithidomlem.2 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
1arithidomlem.3 (𝜑𝐻 ∈ Word 𝑃)
1arithidomlem.4 (𝜑 → ∃𝑘𝑈 (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑘 · (𝑀 Σg 𝐻)))
1arithidomlem.5 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
1arithidomlem.6 (𝜑𝑄(∥r𝑅)(𝐻𝐾))
1arithidomlem.7 (𝜑𝑇𝑈)
1arithidomlem.8 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
1arithidomlem.9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1arithidomlem.10 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
1arithidomlem.11 (𝜑𝑁𝑈)
1arithidomlem.12 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
Assertion
Ref Expression
1arithidomlem1 (𝜑 → ∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))))
Distinct variable groups:   · ,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤   𝐹,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤   𝐻,𝑐,𝑑,𝑔,𝑢,𝑤,𝑘   𝑘,𝐾,𝑢,𝑤   𝑔,𝑀,𝑢,𝑘   𝑢,𝑁,𝑤   𝑃,𝑔,𝑢,𝑘   𝑢,𝑄,𝑤   𝑅,𝑔,𝑢,𝑘   𝑆,𝑐,𝑑,𝑔,𝑢,𝑤,𝑘   𝑢,𝑇,𝑤   𝑈,𝑐,𝑑,𝑔,𝑢,𝑤,𝑘   𝑄,𝑔,𝑘
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝑃(𝑤,𝑐,𝑑)   𝑄(𝑐,𝑑)   𝑅(𝑤,𝑐,𝑑)   𝑇(𝑔,𝑘,𝑐,𝑑)   𝐺(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝐽(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝐾(𝑔,𝑐,𝑑)   𝑀(𝑤,𝑐,𝑑)   𝑁(𝑔,𝑘,𝑐,𝑑)

Proof of Theorem 1arithidomlem1
Dummy variables 𝑙 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7426 . . . . . 6 (𝑙 = (𝑁 · 𝑇) → (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
21eqeq2d 2736 . . . . 5 (𝑙 = (𝑁 · 𝑇) → ((𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ (𝑀 Σg 𝐹) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
3 1arithidom.r . . . . . . 7 (𝜑𝑅 ∈ IDomn)
43idomringd 21274 . . . . . 6 (𝜑𝑅 ∈ Ring)
5 1arithidomlem.11 . . . . . 6 (𝜑𝑁𝑈)
6 1arithidomlem.7 . . . . . 6 (𝜑𝑇𝑈)
7 1arithidom.u . . . . . . 7 𝑈 = (Unit‘𝑅)
8 1arithidom.t . . . . . . 7 · = (.r𝑅)
97, 8unitmulcl 20331 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁𝑈𝑇𝑈) → (𝑁 · 𝑇) ∈ 𝑈)
104, 5, 6, 9syl3anc 1368 . . . . 5 (𝜑 → (𝑁 · 𝑇) ∈ 𝑈)
11 eqid 2725 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2725 . . . . . 6 (0g𝑅) = (0g𝑅)
13 1arithidom.i . . . . . . . 8 𝑃 = (RPrime‘𝑅)
14 1arithidomlem.1 . . . . . . . 8 (𝜑𝑄𝑃)
1511, 13, 3, 14rprmcl 33330 . . . . . . 7 (𝜑𝑄 ∈ (Base‘𝑅))
1613, 12, 3, 14rprmnz 33332 . . . . . . 7 (𝜑𝑄 ≠ (0g𝑅))
1715, 16eldifsnd 32393 . . . . . 6 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
18 1arithidom.m . . . . . . . 8 𝑀 = (mulGrp‘𝑅)
1918, 11mgpbas 20092 . . . . . . 7 (Base‘𝑅) = (Base‘𝑀)
20 eqid 2725 . . . . . . . 8 (1r𝑅) = (1r𝑅)
2118, 20ringidval 20135 . . . . . . 7 (1r𝑅) = (0g𝑀)
22 id 22 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ IDomn)
2322idomcringd 21273 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
2418crngmgp 20193 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
2523, 24syl 17 . . . . . . . 8 (𝑅 ∈ IDomn → 𝑀 ∈ CMnd)
263, 25syl 17 . . . . . . 7 (𝜑𝑀 ∈ CMnd)
27 ovexd 7454 . . . . . . 7 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
28 eqidd 2726 . . . . . . . 8 (𝜑 → (♯‘𝐹) = (♯‘𝐹))
29 simpl 481 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑅 ∈ IDomn)
30 simpr 483 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑞𝑃)
3111, 13, 29, 30rprmcl 33330 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑞 ∈ (Base‘𝑅))
3231ex 411 . . . . . . . . . . 11 (𝑅 ∈ IDomn → (𝑞𝑃𝑞 ∈ (Base‘𝑅)))
3332ssrdv 3982 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑃 ⊆ (Base‘𝑅))
34 sswrd 14508 . . . . . . . . . 10 (𝑃 ⊆ (Base‘𝑅) → Word 𝑃 ⊆ Word (Base‘𝑅))
353, 33, 343syl 18 . . . . . . . . 9 (𝜑 → Word 𝑃 ⊆ Word (Base‘𝑅))
36 1arithidom.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝑃)
3735, 36sseldd 3977 . . . . . . . 8 (𝜑𝐹 ∈ Word (Base‘𝑅))
3828, 37wrdfd 32744 . . . . . . 7 (𝜑𝐹:(0..^(♯‘𝐹))⟶(Base‘𝑅))
39 fvexd 6911 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ V)
4039, 36wrdfsupp 32747 . . . . . . 7 (𝜑𝐹 finSupp (1r𝑅))
4119, 21, 26, 27, 38, 40gsumcl 19882 . . . . . 6 (𝜑 → (𝑀 Σg 𝐹) ∈ (Base‘𝑅))
4211, 7unitcl 20326 . . . . . . . . 9 (𝑁𝑈𝑁 ∈ (Base‘𝑅))
435, 42syl 17 . . . . . . . 8 (𝜑𝑁 ∈ (Base‘𝑅))
4411, 7unitcl 20326 . . . . . . . . 9 (𝑇𝑈𝑇 ∈ (Base‘𝑅))
456, 44syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (Base‘𝑅))
4611, 8, 4, 43, 45ringcld 20211 . . . . . . 7 (𝜑 → (𝑁 · 𝑇) ∈ (Base‘𝑅))
47 ovexd 7454 . . . . . . . 8 (𝜑 → (0..^((♯‘𝐻) − 1)) ∈ V)
48 1arithidomlem.9 . . . . . . . . . . . . 13 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
49 f1of 6838 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
50 iswrdi 14504 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 ∈ Word (0..^(♯‘𝐻)))
5148, 49, 503syl 18 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Word (0..^(♯‘𝐻)))
52 eqidd 2726 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘𝐻))
53 1arithidomlem.3 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Word 𝑃)
5452, 53wrdfd 32744 . . . . . . . . . . . 12 (𝜑𝐻:(0..^(♯‘𝐻))⟶𝑃)
55 wrdco 14818 . . . . . . . . . . . 12 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (𝐻𝑆) ∈ Word 𝑃)
5651, 54, 55syl2anc 582 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) ∈ Word 𝑃)
57 1arithidomlem.5 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
58 elfzo0 13708 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝐻)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝐻) ∈ ℕ ∧ 𝐾 < (♯‘𝐻)))
5958simp2bi 1143 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝐻)) → (♯‘𝐻) ∈ ℕ)
60 nnm1nn0 12546 . . . . . . . . . . . . 13 ((♯‘𝐻) ∈ ℕ → ((♯‘𝐻) − 1) ∈ ℕ0)
6157, 59, 603syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ0)
62 lenco 14819 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (♯‘(𝐻𝑆)) = (♯‘𝑆))
6351, 54, 62syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐻𝑆)) = (♯‘𝑆))
64 lencl 14519 . . . . . . . . . . . . . 14 (𝑆 ∈ Word (0..^(♯‘𝐻)) → (♯‘𝑆) ∈ ℕ0)
6551, 64syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
6663, 65eqeltrd 2825 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐻𝑆)) ∈ ℕ0)
67 lencl 14519 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Word 𝑃 → (♯‘𝐻) ∈ ℕ0)
6853, 67syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐻) ∈ ℕ0)
6968nn0red 12566 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐻) ∈ ℝ)
7069lem1d 12180 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘𝐻))
7148, 49syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
72 ffn 6723 . . . . . . . . . . . . . . 15 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 Fn (0..^(♯‘𝐻)))
73 hashfn 14370 . . . . . . . . . . . . . . 15 (𝑆 Fn (0..^(♯‘𝐻)) → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
7471, 72, 733syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
75 hashfzo0 14425 . . . . . . . . . . . . . . 15 ((♯‘𝐻) ∈ ℕ0 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
7653, 67, 753syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
7763, 74, 763eqtrrd 2770 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘(𝐻𝑆)))
7870, 77breqtrd 5175 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆)))
79 elfz2nn0 13627 . . . . . . . . . . . 12 (((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))) ↔ (((♯‘𝐻) − 1) ∈ ℕ0 ∧ (♯‘(𝐻𝑆)) ∈ ℕ0 ∧ ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆))))
8061, 66, 78, 79syl3anbrc 1340 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))))
81 pfxlen 14669 . . . . . . . . . . 11 (((𝐻𝑆) ∈ Word 𝑃 ∧ ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆)))) → (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))) = ((♯‘𝐻) − 1))
8256, 80, 81syl2anc 582 . . . . . . . . . 10 (𝜑 → (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))) = ((♯‘𝐻) − 1))
8382eqcomd 2731 . . . . . . . . 9 (𝜑 → ((♯‘𝐻) − 1) = (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))))
84 pfxcl 14663 . . . . . . . . . . 11 ((𝐻𝑆) ∈ Word 𝑃 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word 𝑃)
8556, 84syl 17 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word 𝑃)
8635, 85sseldd 3977 . . . . . . . . 9 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word (Base‘𝑅))
8783, 86wrdfd 32744 . . . . . . . 8 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)):(0..^((♯‘𝐻) − 1))⟶(Base‘𝑅))
8822idomringd 21274 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
897, 201unit 20325 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
903, 88, 893syl 18 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝑈)
9190, 85wrdfsupp 32747 . . . . . . . 8 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) finSupp (1r𝑅))
9219, 21, 26, 47, 87, 91gsumcl 19882 . . . . . . 7 (𝜑 → (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) ∈ (Base‘𝑅))
9311, 8, 4, 46, 92ringcld 20211 . . . . . 6 (𝜑 → ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ∈ (Base‘𝑅))
94 1arithidomlem.12 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
9518ringmgp 20191 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
9688, 95syl 17 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑀 ∈ Mnd)
973, 96syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
9818, 8mgpplusg 20090 . . . . . . . . . 10 · = (+g𝑀)
9919, 98gsumccatsn 18803 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐹 ∈ Word (Base‘𝑅) ∧ 𝑄 ∈ (Base‘𝑅)) → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = ((𝑀 Σg 𝐹) · 𝑄))
10097, 37, 15, 99syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = ((𝑀 Σg 𝐹) · 𝑄))
101 ovexd 7454 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐻)) ∈ V)
10235, 53sseldd 3977 . . . . . . . . . . 11 (𝜑𝐻 ∈ Word (Base‘𝑅))
10352, 102wrdfd 32744 . . . . . . . . . 10 (𝜑𝐻:(0..^(♯‘𝐻))⟶(Base‘𝑅))
10439, 53wrdfsupp 32747 . . . . . . . . . 10 (𝜑𝐻 finSupp (1r𝑅))
10519, 21, 26, 101, 103, 104, 48gsumf1o 19883 . . . . . . . . 9 (𝜑 → (𝑀 Σg 𝐻) = (𝑀 Σg (𝐻𝑆)))
106105oveq2d 7435 . . . . . . . 8 (𝜑 → (𝑁 · (𝑀 Σg 𝐻)) = (𝑁 · (𝑀 Σg (𝐻𝑆))))
10794, 100, 1063eqtr3d 2773 . . . . . . 7 (𝜑 → ((𝑀 Σg 𝐹) · 𝑄) = (𝑁 · (𝑀 Σg (𝐻𝑆))))
10819, 98cmn12 19769 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑇 ∈ (Base‘𝑅) ∧ (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) ∈ (Base‘𝑅) ∧ 𝑄 ∈ (Base‘𝑅))) → (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
10926, 45, 92, 15, 108syl13anc 1369 . . . . . . . . 9 (𝜑 → (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
11011, 8, 4, 45, 92, 15ringassd 20209 . . . . . . . . 9 (𝜑 → ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄) = (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)))
111103, 57ffvelcdmd 7094 . . . . . . . . . . 11 (𝜑 → (𝐻𝐾) ∈ (Base‘𝑅))
11219, 98gsumccatsn 18803 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word (Base‘𝑅) ∧ (𝐻𝐾) ∈ (Base‘𝑅)) → (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
11397, 86, 111, 112syl3anc 1368 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
114 1arithidomlem.10 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
115114oveq2d 7435 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝐻𝑆)) = (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)))
116 1arithidomlem.8 . . . . . . . . . . 11 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
117116oveq2d 7435 . . . . . . . . . 10 (𝜑 → ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
118113, 115, 1173eqtr4d 2775 . . . . . . . . 9 (𝜑 → (𝑀 Σg (𝐻𝑆)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
119109, 110, 1183eqtr4rd 2776 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐻𝑆)) = ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
120119oveq2d 7435 . . . . . . 7 (𝜑 → (𝑁 · (𝑀 Σg (𝐻𝑆))) = (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)))
12111, 8, 4, 43, 45, 92ringassd 20209 . . . . . . . . 9 (𝜑 → ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = (𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
122121oveq1d 7434 . . . . . . . 8 (𝜑 → (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄) = ((𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))) · 𝑄))
12311, 8, 4, 45, 92ringcld 20211 . . . . . . . . 9 (𝜑 → (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ∈ (Base‘𝑅))
12411, 8, 4, 43, 123, 15ringassd 20209 . . . . . . . 8 (𝜑 → ((𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))) · 𝑄) = (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)))
125122, 124eqtr2d 2766 . . . . . . 7 (𝜑 → (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)) = (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
126107, 120, 1253eqtrd 2769 . . . . . 6 (𝜑 → ((𝑀 Σg 𝐹) · 𝑄) = (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
12711, 12, 8, 17, 41, 93, 3, 126idomrcan 33068 . . . . 5 (𝜑 → (𝑀 Σg 𝐹) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
1282, 10, 127rspcedvdw 3609 . . . 4 (𝜑 → ∃𝑙𝑈 (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
129 oveq1 7426 . . . . . 6 (𝑘 = 𝑙 → (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
130129eqeq2d 2736 . . . . 5 (𝑘 = 𝑙 → ((𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
131130cbvrexvw 3225 . . . 4 (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ ∃𝑙𝑈 (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
132128, 131sylibr 233 . . 3 (𝜑 → ∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
133 oveq2 7427 . . . . . . . 8 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑀 Σg 𝑔) = (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))
134133oveq2d 7435 . . . . . . 7 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑘 · (𝑀 Σg 𝑔)) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
135134eqeq2d 2736 . . . . . 6 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) ↔ (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
136135rexbidv 3168 . . . . 5 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) ↔ ∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
137 eqeq1 2729 . . . . . . . 8 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑔 = (𝑢f · (𝐹𝑤)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
138137anbi2d 628 . . . . . . 7 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ (𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
139138rexbidv 3168 . . . . . 6 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
140139exbidv 1916 . . . . 5 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
141136, 140imbi12d 343 . . . 4 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))) ↔ (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))))
142 1arithidomlem.2 . . . 4 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
143141, 142, 85rspcdva 3607 . . 3 (𝜑 → (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
144132, 143mpd 15 . 2 (𝜑 → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
145 oveq1 7426 . . . . . . 7 (𝑑 = 𝑢 → (𝑑f · (𝐹𝑐)) = (𝑢f · (𝐹𝑐)))
146145eqeq2d 2736 . . . . . 6 (𝑑 = 𝑢 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))))
147146anbi2d 628 . . . . 5 (𝑑 = 𝑢 → ((𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ (𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐)))))
148147cbvrexvw 3225 . . . 4 (∃𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))))
149 f1oeq1 6826 . . . . . 6 (𝑐 = 𝑤 → (𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ↔ 𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))))
150 coeq2 5861 . . . . . . . 8 (𝑐 = 𝑤 → (𝐹𝑐) = (𝐹𝑤))
151150oveq2d 7435 . . . . . . 7 (𝑐 = 𝑤 → (𝑢f · (𝐹𝑐)) = (𝑢f · (𝐹𝑤)))
152151eqeq2d 2736 . . . . . 6 (𝑐 = 𝑤 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
153149, 152anbi12d 630 . . . . 5 (𝑐 = 𝑤 → ((𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))) ↔ (𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
154153rexbidv 3168 . . . 4 (𝑐 = 𝑤 → (∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
155148, 154bitrid 282 . . 3 (𝑐 = 𝑤 → (∃𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
156155cbvexvw 2032 . 2 (∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
157144, 156sylibr 233 1 (𝜑 → ∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3050  wrex 3059  Vcvv 3461  wss 3944   class class class wbr 5149  ccom 5682   Fn wfn 6544  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  f cof 7683  m cmap 8845  0cc0 11140  1c1 11141   < clt 11280  cle 11281  cmin 11476  cn 12245  0cn0 12505  ...cfz 13519  ..^cfzo 13662  chash 14325  Word cword 14500   ++ cconcat 14556  ⟨“cs1 14581   prefix cpfx 14656  Basecbs 17183  .rcmulr 17237  0gc0g 17424   Σg cgsu 17425  Mndcmnd 18697  CMndccmn 19747  mulGrpcmgp 20086  1rcur 20133  Ringcrg 20185  CRingccrg 20186  rcdsr 20305  Unitcui 20306  RPrimecrpm 20383  IDomncidom 21245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-word 14501  df-concat 14557  df-s1 14582  df-substr 14627  df-pfx 14657  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-0g 17426  df-gsum 17427  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-rprm 20384  df-nzr 20464  df-domn 21248  df-idom 21249
This theorem is referenced by:  1arithidom  33349
  Copyright terms: Public domain W3C validator