Step | Hyp | Ref
| Expression |
1 | | oveq1 7455 |
. . . . . 6
⊢ (𝑙 = (𝑁 · 𝑇) → (𝑙 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) |
2 | 1 | eqeq2d 2751 |
. . . . 5
⊢ (𝑙 = (𝑁 · 𝑇) → ((𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) ↔ (𝑀 Σg 𝐹) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))))) |
3 | | 1arithidom.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ IDomn) |
4 | 3 | idomringd 20750 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
5 | | 1arithidomlem.11 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ 𝑈) |
6 | | 1arithidomlem.7 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ 𝑈) |
7 | | 1arithidom.u |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑅) |
8 | | 1arithidom.t |
. . . . . . 7
⊢ · =
(.r‘𝑅) |
9 | 7, 8 | unitmulcl 20406 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ 𝑈 ∧ 𝑇 ∈ 𝑈) → (𝑁 · 𝑇) ∈ 𝑈) |
10 | 4, 5, 6, 9 | syl3anc 1371 |
. . . . 5
⊢ (𝜑 → (𝑁 · 𝑇) ∈ 𝑈) |
11 | | eqid 2740 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | | eqid 2740 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
13 | | 1arithidom.m |
. . . . . . . 8
⊢ 𝑀 = (mulGrp‘𝑅) |
14 | 13, 11 | mgpbas 20167 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑀) |
15 | | eqid 2740 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
16 | 13, 15 | ringidval 20210 |
. . . . . . 7
⊢
(1r‘𝑅) = (0g‘𝑀) |
17 | | id 22 |
. . . . . . . . . 10
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ IDomn) |
18 | 17 | idomcringd 20749 |
. . . . . . . . 9
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
19 | 13 | crngmgp 20268 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
20 | 18, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ IDomn → 𝑀 ∈ CMnd) |
21 | 3, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ CMnd) |
22 | | ovexd 7483 |
. . . . . . 7
⊢ (𝜑 → (0..^(♯‘𝐹)) ∈ V) |
23 | | eqidd 2741 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐹) = (♯‘𝐹)) |
24 | | 1arithidom.i |
. . . . . . . . . . . . 13
⊢ 𝑃 = (RPrime‘𝑅) |
25 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ IDomn ∧ 𝑞 ∈ 𝑃) → 𝑅 ∈ IDomn) |
26 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ IDomn ∧ 𝑞 ∈ 𝑃) → 𝑞 ∈ 𝑃) |
27 | 11, 24, 25, 26 | rprmcl 33511 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ IDomn ∧ 𝑞 ∈ 𝑃) → 𝑞 ∈ (Base‘𝑅)) |
28 | 27 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ IDomn → (𝑞 ∈ 𝑃 → 𝑞 ∈ (Base‘𝑅))) |
29 | 28 | ssrdv 4014 |
. . . . . . . . . 10
⊢ (𝑅 ∈ IDomn → 𝑃 ⊆ (Base‘𝑅)) |
30 | | sswrd 14570 |
. . . . . . . . . 10
⊢ (𝑃 ⊆ (Base‘𝑅) → Word 𝑃 ⊆ Word (Base‘𝑅)) |
31 | 3, 29, 30 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → Word 𝑃 ⊆ Word (Base‘𝑅)) |
32 | | 1arithidom.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ Word 𝑃) |
33 | 31, 32 | sseldd 4009 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ Word (Base‘𝑅)) |
34 | 23, 33 | wrdfd 32900 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶(Base‘𝑅)) |
35 | | fvexd 6935 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ V) |
36 | 35, 32 | wrdfsupp 32903 |
. . . . . . 7
⊢ (𝜑 → 𝐹 finSupp (1r‘𝑅)) |
37 | 14, 16, 21, 22, 34, 36 | gsumcl 19957 |
. . . . . 6
⊢ (𝜑 → (𝑀 Σg 𝐹) ∈ (Base‘𝑅)) |
38 | 11, 7 | unitcl 20401 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑈 → 𝑁 ∈ (Base‘𝑅)) |
39 | 5, 38 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (Base‘𝑅)) |
40 | 11, 7 | unitcl 20401 |
. . . . . . . . 9
⊢ (𝑇 ∈ 𝑈 → 𝑇 ∈ (Base‘𝑅)) |
41 | 6, 40 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ (Base‘𝑅)) |
42 | 11, 8, 4, 39, 41 | ringcld 20286 |
. . . . . . 7
⊢ (𝜑 → (𝑁 · 𝑇) ∈ (Base‘𝑅)) |
43 | | ovexd 7483 |
. . . . . . . 8
⊢ (𝜑 → (0..^((♯‘𝐻) − 1)) ∈
V) |
44 | | 1arithidomlem.9 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) |
45 | | f1of 6862 |
. . . . . . . . . . . . 13
⊢ (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻))) |
46 | | iswrdi 14566 |
. . . . . . . . . . . . 13
⊢ (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 ∈ Word (0..^(♯‘𝐻))) |
47 | 44, 45, 46 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ Word (0..^(♯‘𝐻))) |
48 | | eqidd 2741 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝐻) = (♯‘𝐻)) |
49 | | 1arithidomlem.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻 ∈ Word 𝑃) |
50 | 48, 49 | wrdfd 32900 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))⟶𝑃) |
51 | | wrdco 14880 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Word
(0..^(♯‘𝐻))
∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (𝐻 ∘ 𝑆) ∈ Word 𝑃) |
52 | 47, 50, 51 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐻 ∘ 𝑆) ∈ Word 𝑃) |
53 | | 1arithidomlem.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐻))) |
54 | | elfzo0 13757 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈
(0..^(♯‘𝐻))
↔ (𝐾 ∈
ℕ0 ∧ (♯‘𝐻) ∈ ℕ ∧ 𝐾 < (♯‘𝐻))) |
55 | 54 | simp2bi 1146 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈
(0..^(♯‘𝐻))
→ (♯‘𝐻)
∈ ℕ) |
56 | | nnm1nn0 12594 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐻)
∈ ℕ → ((♯‘𝐻) − 1) ∈
ℕ0) |
57 | 53, 55, 56 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝐻) − 1) ∈
ℕ0) |
58 | | lenco 14881 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Word
(0..^(♯‘𝐻))
∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (♯‘(𝐻 ∘ 𝑆)) = (♯‘𝑆)) |
59 | 47, 50, 58 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(𝐻 ∘ 𝑆)) = (♯‘𝑆)) |
60 | | lencl 14581 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ Word
(0..^(♯‘𝐻))
→ (♯‘𝑆)
∈ ℕ0) |
61 | 47, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝑆) ∈
ℕ0) |
62 | 59, 61 | eqeltrd 2844 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝐻 ∘ 𝑆)) ∈
ℕ0) |
63 | | lencl 14581 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 ∈ Word 𝑃 → (♯‘𝐻) ∈
ℕ0) |
64 | 49, 63 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘𝐻) ∈
ℕ0) |
65 | 64 | nn0red 12614 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝐻) ∈
ℝ) |
66 | 65 | lem1d 12228 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((♯‘𝐻) − 1) ≤
(♯‘𝐻)) |
67 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻))) |
68 | | ffn 6747 |
. . . . . . . . . . . . . . 15
⊢ (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 Fn (0..^(♯‘𝐻))) |
69 | | hashfn 14424 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 Fn (0..^(♯‘𝐻)) → (♯‘𝑆) =
(♯‘(0..^(♯‘𝐻)))) |
70 | 67, 68, 69 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝑆) =
(♯‘(0..^(♯‘𝐻)))) |
71 | | hashfzo0 14479 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐻)
∈ ℕ0 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻)) |
72 | 49, 63, 71 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(♯‘(0..^(♯‘𝐻))) = (♯‘𝐻)) |
73 | 59, 70, 72 | 3eqtrrd 2785 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝐻) = (♯‘(𝐻 ∘ 𝑆))) |
74 | 66, 73 | breqtrd 5192 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝐻) − 1) ≤
(♯‘(𝐻 ∘
𝑆))) |
75 | | elfz2nn0 13675 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐻)
− 1) ∈ (0...(♯‘(𝐻 ∘ 𝑆))) ↔ (((♯‘𝐻) − 1) ∈
ℕ0 ∧ (♯‘(𝐻 ∘ 𝑆)) ∈ ℕ0 ∧
((♯‘𝐻) −
1) ≤ (♯‘(𝐻
∘ 𝑆)))) |
76 | 57, 62, 74, 75 | syl3anbrc 1343 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝐻) − 1) ∈
(0...(♯‘(𝐻
∘ 𝑆)))) |
77 | | pfxlen 14731 |
. . . . . . . . . . 11
⊢ (((𝐻 ∘ 𝑆) ∈ Word 𝑃 ∧ ((♯‘𝐻) − 1) ∈
(0...(♯‘(𝐻
∘ 𝑆)))) →
(♯‘((𝐻 ∘
𝑆) prefix
((♯‘𝐻) −
1))) = ((♯‘𝐻)
− 1)) |
78 | 52, 76, 77 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) = ((♯‘𝐻) − 1)) |
79 | 78 | eqcomd 2746 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝐻) − 1) =
(♯‘((𝐻 ∘
𝑆) prefix
((♯‘𝐻) −
1)))) |
80 | | pfxcl 14725 |
. . . . . . . . . . 11
⊢ ((𝐻 ∘ 𝑆) ∈ Word 𝑃 → ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word 𝑃) |
81 | 52, 80 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word 𝑃) |
82 | 31, 81 | sseldd 4009 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word (Base‘𝑅)) |
83 | 79, 82 | wrdfd 32900 |
. . . . . . . 8
⊢ (𝜑 → ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)):(0..^((♯‘𝐻) −
1))⟶(Base‘𝑅)) |
84 | 17 | idomringd 20750 |
. . . . . . . . . 10
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Ring) |
85 | 7, 15 | 1unit 20400 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝑈) |
86 | 3, 84, 85 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (1r‘𝑅) ∈ 𝑈) |
87 | 86, 81 | wrdfsupp 32903 |
. . . . . . . 8
⊢ (𝜑 → ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) finSupp
(1r‘𝑅)) |
88 | 14, 16, 21, 43, 83, 87 | gsumcl 19957 |
. . . . . . 7
⊢ (𝜑 → (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) ∈ (Base‘𝑅)) |
89 | 11, 8, 4, 42, 88 | ringcld 20286 |
. . . . . 6
⊢ (𝜑 → ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) ∈ (Base‘𝑅)) |
90 | | 1arithidomlem.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
91 | 11, 24, 3, 90 | rprmcl 33511 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ (Base‘𝑅)) |
92 | 24, 12, 3, 90 | rprmnz 33513 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ≠ (0g‘𝑅)) |
93 | 91, 92 | eldifsnd 4812 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
94 | | 1arithidomlem.12 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = (𝑁 · (𝑀 Σg 𝐻))) |
95 | 13 | ringmgp 20266 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
96 | 84, 95 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ IDomn → 𝑀 ∈ Mnd) |
97 | 3, 96 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Mnd) |
98 | 13, 8 | mgpplusg 20165 |
. . . . . . . . . 10
⊢ · =
(+g‘𝑀) |
99 | 14, 98 | gsumccatsn 18878 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ 𝐹 ∈ Word (Base‘𝑅) ∧ 𝑄 ∈ (Base‘𝑅)) → (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = ((𝑀 Σg
𝐹) · 𝑄)) |
100 | 97, 33, 91, 99 | syl3anc 1371 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 Σg (𝐹 ++ 〈“𝑄”〉)) = ((𝑀 Σg
𝐹) · 𝑄)) |
101 | | ovexd 7483 |
. . . . . . . . . 10
⊢ (𝜑 → (0..^(♯‘𝐻)) ∈ V) |
102 | 31, 49 | sseldd 4009 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ Word (Base‘𝑅)) |
103 | 48, 102 | wrdfd 32900 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))⟶(Base‘𝑅)) |
104 | 35, 49 | wrdfsupp 32903 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 finSupp (1r‘𝑅)) |
105 | 14, 16, 21, 101, 103, 104, 44 | gsumf1o 19958 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 Σg 𝐻) = (𝑀 Σg (𝐻 ∘ 𝑆))) |
106 | 105 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 · (𝑀 Σg 𝐻)) = (𝑁 · (𝑀 Σg (𝐻 ∘ 𝑆)))) |
107 | 94, 100, 106 | 3eqtr3d 2788 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 Σg 𝐹) · 𝑄) = (𝑁 · (𝑀 Σg (𝐻 ∘ 𝑆)))) |
108 | 14, 98 | cmn12 19844 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ CMnd ∧ (𝑇 ∈ (Base‘𝑅) ∧ (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) ∈ (Base‘𝑅) ∧ 𝑄 ∈ (Base‘𝑅))) → (𝑇 · ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)) = ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄))) |
109 | 21, 41, 88, 91, 108 | syl13anc 1372 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 · ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)) = ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄))) |
110 | 11, 8, 4, 41, 88, 91 | ringassd 20284 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄) = (𝑇 · ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄))) |
111 | 103, 53 | ffvelcdmd 7119 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐻‘𝐾) ∈ (Base‘𝑅)) |
112 | 14, 98 | gsumccatsn 18878 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ Mnd ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word (Base‘𝑅) ∧ (𝐻‘𝐾) ∈ (Base‘𝑅)) → (𝑀 Σg (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ++ 〈“(𝐻‘𝐾)”〉)) = ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻‘𝐾))) |
113 | 97, 82, 111, 112 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 Σg (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ++ 〈“(𝐻‘𝐾)”〉)) = ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻‘𝐾))) |
114 | | 1arithidomlem.10 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐻 ∘ 𝑆) = (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ++ 〈“(𝐻‘𝐾)”〉)) |
115 | 114 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 Σg (𝐻 ∘ 𝑆)) = (𝑀 Σg (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) ++ 〈“(𝐻‘𝐾)”〉))) |
116 | | 1arithidomlem.8 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 · 𝑄) = (𝐻‘𝐾)) |
117 | 116 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)) = ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻‘𝐾))) |
118 | 113, 115,
117 | 3eqtr4d 2790 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 Σg (𝐻 ∘ 𝑆)) = ((𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄))) |
119 | 109, 110,
118 | 3eqtr4rd 2791 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 Σg (𝐻 ∘ 𝑆)) = ((𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)) |
120 | 119 | oveq2d 7464 |
. . . . . . 7
⊢ (𝜑 → (𝑁 · (𝑀 Σg (𝐻 ∘ 𝑆))) = (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))) |
121 | 11, 8, 4, 39, 41, 88 | ringassd 20284 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) = (𝑁 · (𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))))) |
122 | 121 | oveq1d 7463 |
. . . . . . . 8
⊢ (𝜑 → (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄) = ((𝑁 · (𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) · 𝑄)) |
123 | 11, 8, 4, 41, 88 | ringcld 20286 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) ∈ (Base‘𝑅)) |
124 | 11, 8, 4, 39, 123, 91 | ringassd 20284 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 · (𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) · 𝑄) = (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))) |
125 | 122, 124 | eqtr2d 2781 |
. . . . . . 7
⊢ (𝜑 → (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)) = (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)) |
126 | 107, 120,
125 | 3eqtrd 2784 |
. . . . . 6
⊢ (𝜑 → ((𝑀 Σg 𝐹) · 𝑄) = (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)) |
127 | 11, 12, 8, 37, 89, 93, 3, 126 | idomrcan 33248 |
. . . . 5
⊢ (𝜑 → (𝑀 Σg 𝐹) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) |
128 | 2, 10, 127 | rspcedvdw 3638 |
. . . 4
⊢ (𝜑 → ∃𝑙 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) |
129 | | oveq1 7455 |
. . . . . 6
⊢ (𝑘 = 𝑙 → (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) = (𝑙 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) |
130 | 129 | eqeq2d 2751 |
. . . . 5
⊢ (𝑘 = 𝑙 → ((𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) ↔ (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))))) |
131 | 130 | cbvrexvw 3244 |
. . . 4
⊢
(∃𝑘 ∈
𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) ↔ ∃𝑙 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) |
132 | 128, 131 | sylibr 234 |
. . 3
⊢ (𝜑 → ∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) |
133 | | oveq2 7456 |
. . . . . . . 8
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → (𝑀 Σg 𝑔) = (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) |
134 | 133 | oveq2d 7464 |
. . . . . . 7
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → (𝑘 · (𝑀 Σg 𝑔)) = (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1))))) |
135 | 134 | eqeq2d 2751 |
. . . . . 6
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → ((𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) ↔ (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))))) |
136 | 135 | rexbidv 3185 |
. . . . 5
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) ↔ ∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))))) |
137 | | eqeq1 2744 |
. . . . . . . 8
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → (𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤)) ↔ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤)))) |
138 | 137 | anbi2d 629 |
. . . . . . 7
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → ((𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤))) ↔ (𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) |
139 | 138 | rexbidv 3185 |
. . . . . 6
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤))) ↔ ∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) |
140 | 139 | exbidv 1920 |
. . . . 5
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑤∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤))) ↔ ∃𝑤∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) |
141 | 136, 140 | imbi12d 344 |
. . . 4
⊢ (𝑔 = ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) → ((∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤)))) ↔ (∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) → ∃𝑤∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤)))))) |
142 | | 1arithidomlem.2 |
. . . 4
⊢ (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) |
143 | 141, 142,
81 | rspcdva 3636 |
. . 3
⊢ (𝜑 → (∃𝑘 ∈ 𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)))) → ∃𝑤∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) |
144 | 132, 143 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑤∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤)))) |
145 | | oveq1 7455 |
. . . . . . 7
⊢ (𝑑 = 𝑢 → (𝑑 ∘f · (𝐹 ∘ 𝑐)) = (𝑢 ∘f · (𝐹 ∘ 𝑐))) |
146 | 145 | eqeq2d 2751 |
. . . . . 6
⊢ (𝑑 = 𝑢 → (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑 ∘f · (𝐹 ∘ 𝑐)) ↔ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑐)))) |
147 | 146 | anbi2d 629 |
. . . . 5
⊢ (𝑑 = 𝑢 → ((𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑 ∘f · (𝐹 ∘ 𝑐))) ↔ (𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑐))))) |
148 | 147 | cbvrexvw 3244 |
. . . 4
⊢
(∃𝑑 ∈
(𝑈 ↑m
(0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑 ∘f · (𝐹 ∘ 𝑐))) ↔ ∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑐)))) |
149 | | f1oeq1 6850 |
. . . . . 6
⊢ (𝑐 = 𝑤 → (𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ↔ 𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)))) |
150 | | coeq2 5883 |
. . . . . . . 8
⊢ (𝑐 = 𝑤 → (𝐹 ∘ 𝑐) = (𝐹 ∘ 𝑤)) |
151 | 150 | oveq2d 7464 |
. . . . . . 7
⊢ (𝑐 = 𝑤 → (𝑢 ∘f · (𝐹 ∘ 𝑐)) = (𝑢 ∘f · (𝐹 ∘ 𝑤))) |
152 | 151 | eqeq2d 2751 |
. . . . . 6
⊢ (𝑐 = 𝑤 → (((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑐)) ↔ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤)))) |
153 | 149, 152 | anbi12d 631 |
. . . . 5
⊢ (𝑐 = 𝑤 → ((𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑐))) ↔ (𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) |
154 | 153 | rexbidv 3185 |
. . . 4
⊢ (𝑐 = 𝑤 → (∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑐))) ↔ ∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) |
155 | 148, 154 | bitrid 283 |
. . 3
⊢ (𝑐 = 𝑤 → (∃𝑑 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑 ∘f · (𝐹 ∘ 𝑐))) ↔ ∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤))))) |
156 | 155 | cbvexvw 2036 |
. 2
⊢
(∃𝑐∃𝑑 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑 ∘f · (𝐹 ∘ 𝑐))) ↔ ∃𝑤∃𝑢 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢 ∘f · (𝐹 ∘ 𝑤)))) |
157 | 144, 156 | sylibr 234 |
1
⊢ (𝜑 → ∃𝑐∃𝑑 ∈ (𝑈 ↑m
(0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻 ∘ 𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑 ∘f · (𝐹 ∘ 𝑐)))) |