Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithidomlem1 Structured version   Visualization version   GIF version

Theorem 1arithidomlem1 33495
Description: Lemma for 1arithidom 33497. (Contributed by Thierry Arnoux, 30-May-2025.)
Hypotheses
Ref Expression
1arithidom.u 𝑈 = (Unit‘𝑅)
1arithidom.i 𝑃 = (RPrime‘𝑅)
1arithidom.m 𝑀 = (mulGrp‘𝑅)
1arithidom.t · = (.r𝑅)
1arithidom.j 𝐽 = (0..^(♯‘𝐹))
1arithidom.r (𝜑𝑅 ∈ IDomn)
1arithidom.f (𝜑𝐹 ∈ Word 𝑃)
1arithidom.g (𝜑𝐺 ∈ Word 𝑃)
1arithidom.1 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))
1arithidomlem.1 (𝜑𝑄𝑃)
1arithidomlem.2 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
1arithidomlem.3 (𝜑𝐻 ∈ Word 𝑃)
1arithidomlem.4 (𝜑 → ∃𝑘𝑈 (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑘 · (𝑀 Σg 𝐻)))
1arithidomlem.5 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
1arithidomlem.6 (𝜑𝑄(∥r𝑅)(𝐻𝐾))
1arithidomlem.7 (𝜑𝑇𝑈)
1arithidomlem.8 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
1arithidomlem.9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1arithidomlem.10 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
1arithidomlem.11 (𝜑𝑁𝑈)
1arithidomlem.12 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
Assertion
Ref Expression
1arithidomlem1 (𝜑 → ∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))))
Distinct variable groups:   · ,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤   𝑆,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤   𝑢,𝑁,𝑤   𝑢,𝑇,𝑤   𝑘,𝐾,𝑢,𝑤   𝐻,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤   𝐹,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤   𝑃,𝑔,𝑘,𝑢   𝑔,𝑀,𝑘,𝑢   𝑅,𝑔,𝑘,𝑢   𝑄,𝑔,𝑘,𝑢,𝑤   𝑈,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝑃(𝑤,𝑐,𝑑)   𝑄(𝑐,𝑑)   𝑅(𝑤,𝑐,𝑑)   𝑇(𝑔,𝑘,𝑐,𝑑)   𝐺(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝐽(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝐾(𝑔,𝑐,𝑑)   𝑀(𝑤,𝑐,𝑑)   𝑁(𝑔,𝑘,𝑐,𝑑)

Proof of Theorem 1arithidomlem1
Dummy variables 𝑙 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . . . 6 (𝑙 = (𝑁 · 𝑇) → (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
21eqeq2d 2742 . . . . 5 (𝑙 = (𝑁 · 𝑇) → ((𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ (𝑀 Σg 𝐹) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
3 1arithidom.r . . . . . . 7 (𝜑𝑅 ∈ IDomn)
43idomringd 20641 . . . . . 6 (𝜑𝑅 ∈ Ring)
5 1arithidomlem.11 . . . . . 6 (𝜑𝑁𝑈)
6 1arithidomlem.7 . . . . . 6 (𝜑𝑇𝑈)
7 1arithidom.u . . . . . . 7 𝑈 = (Unit‘𝑅)
8 1arithidom.t . . . . . . 7 · = (.r𝑅)
97, 8unitmulcl 20296 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁𝑈𝑇𝑈) → (𝑁 · 𝑇) ∈ 𝑈)
104, 5, 6, 9syl3anc 1373 . . . . 5 (𝜑 → (𝑁 · 𝑇) ∈ 𝑈)
11 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2731 . . . . . 6 (0g𝑅) = (0g𝑅)
13 1arithidom.m . . . . . . . 8 𝑀 = (mulGrp‘𝑅)
1413, 11mgpbas 20061 . . . . . . 7 (Base‘𝑅) = (Base‘𝑀)
15 eqid 2731 . . . . . . . 8 (1r𝑅) = (1r𝑅)
1613, 15ringidval 20099 . . . . . . 7 (1r𝑅) = (0g𝑀)
17 id 22 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ IDomn)
1817idomcringd 20640 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
1913crngmgp 20157 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
2018, 19syl 17 . . . . . . . 8 (𝑅 ∈ IDomn → 𝑀 ∈ CMnd)
213, 20syl 17 . . . . . . 7 (𝜑𝑀 ∈ CMnd)
22 ovexd 7381 . . . . . . 7 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
23 eqidd 2732 . . . . . . . 8 (𝜑 → (♯‘𝐹) = (♯‘𝐹))
24 1arithidom.i . . . . . . . . . . . . 13 𝑃 = (RPrime‘𝑅)
25 simpl 482 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑅 ∈ IDomn)
26 simpr 484 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑞𝑃)
2711, 24, 25, 26rprmcl 33478 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑞 ∈ (Base‘𝑅))
2827ex 412 . . . . . . . . . . 11 (𝑅 ∈ IDomn → (𝑞𝑃𝑞 ∈ (Base‘𝑅)))
2928ssrdv 3940 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑃 ⊆ (Base‘𝑅))
30 sswrd 14426 . . . . . . . . . 10 (𝑃 ⊆ (Base‘𝑅) → Word 𝑃 ⊆ Word (Base‘𝑅))
313, 29, 303syl 18 . . . . . . . . 9 (𝜑 → Word 𝑃 ⊆ Word (Base‘𝑅))
32 1arithidom.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝑃)
3331, 32sseldd 3935 . . . . . . . 8 (𝜑𝐹 ∈ Word (Base‘𝑅))
3423, 33wrdfd 14423 . . . . . . 7 (𝜑𝐹:(0..^(♯‘𝐹))⟶(Base‘𝑅))
35 fvexd 6837 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ V)
3635, 32wrdfsupp 32913 . . . . . . 7 (𝜑𝐹 finSupp (1r𝑅))
3714, 16, 21, 22, 34, 36gsumcl 19825 . . . . . 6 (𝜑 → (𝑀 Σg 𝐹) ∈ (Base‘𝑅))
3811, 7unitcl 20291 . . . . . . . . 9 (𝑁𝑈𝑁 ∈ (Base‘𝑅))
395, 38syl 17 . . . . . . . 8 (𝜑𝑁 ∈ (Base‘𝑅))
4011, 7unitcl 20291 . . . . . . . . 9 (𝑇𝑈𝑇 ∈ (Base‘𝑅))
416, 40syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (Base‘𝑅))
4211, 8, 4, 39, 41ringcld 20176 . . . . . . 7 (𝜑 → (𝑁 · 𝑇) ∈ (Base‘𝑅))
43 ovexd 7381 . . . . . . . 8 (𝜑 → (0..^((♯‘𝐻) − 1)) ∈ V)
44 1arithidomlem.9 . . . . . . . . . . . . 13 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
45 f1of 6763 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
46 iswrdi 14421 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 ∈ Word (0..^(♯‘𝐻)))
4744, 45, 463syl 18 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Word (0..^(♯‘𝐻)))
48 eqidd 2732 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘𝐻))
49 1arithidomlem.3 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Word 𝑃)
5048, 49wrdfd 14423 . . . . . . . . . . . 12 (𝜑𝐻:(0..^(♯‘𝐻))⟶𝑃)
51 wrdco 14735 . . . . . . . . . . . 12 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (𝐻𝑆) ∈ Word 𝑃)
5247, 50, 51syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) ∈ Word 𝑃)
53 1arithidomlem.5 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
54 elfzo0 13597 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝐻)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝐻) ∈ ℕ ∧ 𝐾 < (♯‘𝐻)))
5554simp2bi 1146 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝐻)) → (♯‘𝐻) ∈ ℕ)
56 nnm1nn0 12419 . . . . . . . . . . . . 13 ((♯‘𝐻) ∈ ℕ → ((♯‘𝐻) − 1) ∈ ℕ0)
5753, 55, 563syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ0)
58 lenco 14736 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (♯‘(𝐻𝑆)) = (♯‘𝑆))
5947, 50, 58syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐻𝑆)) = (♯‘𝑆))
60 lencl 14437 . . . . . . . . . . . . . 14 (𝑆 ∈ Word (0..^(♯‘𝐻)) → (♯‘𝑆) ∈ ℕ0)
6147, 60syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
6259, 61eqeltrd 2831 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐻𝑆)) ∈ ℕ0)
63 lencl 14437 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Word 𝑃 → (♯‘𝐻) ∈ ℕ0)
6449, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐻) ∈ ℕ0)
6564nn0red 12440 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐻) ∈ ℝ)
6665lem1d 12052 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘𝐻))
6744, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
68 ffn 6651 . . . . . . . . . . . . . . 15 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 Fn (0..^(♯‘𝐻)))
69 hashfn 14279 . . . . . . . . . . . . . . 15 (𝑆 Fn (0..^(♯‘𝐻)) → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
7067, 68, 693syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
71 hashfzo0 14334 . . . . . . . . . . . . . . 15 ((♯‘𝐻) ∈ ℕ0 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
7249, 63, 713syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
7359, 70, 723eqtrrd 2771 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘(𝐻𝑆)))
7466, 73breqtrd 5117 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆)))
75 elfz2nn0 13515 . . . . . . . . . . . 12 (((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))) ↔ (((♯‘𝐻) − 1) ∈ ℕ0 ∧ (♯‘(𝐻𝑆)) ∈ ℕ0 ∧ ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆))))
7657, 62, 74, 75syl3anbrc 1344 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))))
77 pfxlen 14588 . . . . . . . . . . 11 (((𝐻𝑆) ∈ Word 𝑃 ∧ ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆)))) → (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))) = ((♯‘𝐻) − 1))
7852, 76, 77syl2anc 584 . . . . . . . . . 10 (𝜑 → (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))) = ((♯‘𝐻) − 1))
7978eqcomd 2737 . . . . . . . . 9 (𝜑 → ((♯‘𝐻) − 1) = (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))))
80 pfxcl 14582 . . . . . . . . . . 11 ((𝐻𝑆) ∈ Word 𝑃 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word 𝑃)
8152, 80syl 17 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word 𝑃)
8231, 81sseldd 3935 . . . . . . . . 9 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word (Base‘𝑅))
8379, 82wrdfd 14423 . . . . . . . 8 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)):(0..^((♯‘𝐻) − 1))⟶(Base‘𝑅))
8417idomringd 20641 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
857, 151unit 20290 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
863, 84, 853syl 18 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝑈)
8786, 81wrdfsupp 32913 . . . . . . . 8 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) finSupp (1r𝑅))
8814, 16, 21, 43, 83, 87gsumcl 19825 . . . . . . 7 (𝜑 → (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) ∈ (Base‘𝑅))
8911, 8, 4, 42, 88ringcld 20176 . . . . . 6 (𝜑 → ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ∈ (Base‘𝑅))
90 1arithidomlem.1 . . . . . . . 8 (𝜑𝑄𝑃)
9111, 24, 3, 90rprmcl 33478 . . . . . . 7 (𝜑𝑄 ∈ (Base‘𝑅))
9224, 12, 3, 90rprmnz 33480 . . . . . . 7 (𝜑𝑄 ≠ (0g𝑅))
9391, 92eldifsnd 4739 . . . . . 6 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
94 1arithidomlem.12 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
9513ringmgp 20155 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
9684, 95syl 17 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑀 ∈ Mnd)
973, 96syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
9813, 8mgpplusg 20060 . . . . . . . . . 10 · = (+g𝑀)
9914, 98gsumccatsn 18748 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐹 ∈ Word (Base‘𝑅) ∧ 𝑄 ∈ (Base‘𝑅)) → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = ((𝑀 Σg 𝐹) · 𝑄))
10097, 33, 91, 99syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = ((𝑀 Σg 𝐹) · 𝑄))
101 ovexd 7381 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐻)) ∈ V)
10231, 49sseldd 3935 . . . . . . . . . . 11 (𝜑𝐻 ∈ Word (Base‘𝑅))
10348, 102wrdfd 14423 . . . . . . . . . 10 (𝜑𝐻:(0..^(♯‘𝐻))⟶(Base‘𝑅))
10435, 49wrdfsupp 32913 . . . . . . . . . 10 (𝜑𝐻 finSupp (1r𝑅))
10514, 16, 21, 101, 103, 104, 44gsumf1o 19826 . . . . . . . . 9 (𝜑 → (𝑀 Σg 𝐻) = (𝑀 Σg (𝐻𝑆)))
106105oveq2d 7362 . . . . . . . 8 (𝜑 → (𝑁 · (𝑀 Σg 𝐻)) = (𝑁 · (𝑀 Σg (𝐻𝑆))))
10794, 100, 1063eqtr3d 2774 . . . . . . 7 (𝜑 → ((𝑀 Σg 𝐹) · 𝑄) = (𝑁 · (𝑀 Σg (𝐻𝑆))))
10814, 98cmn12 19712 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑇 ∈ (Base‘𝑅) ∧ (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) ∈ (Base‘𝑅) ∧ 𝑄 ∈ (Base‘𝑅))) → (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
10921, 41, 88, 91, 108syl13anc 1374 . . . . . . . . 9 (𝜑 → (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
11011, 8, 4, 41, 88, 91ringassd 20173 . . . . . . . . 9 (𝜑 → ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄) = (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)))
111103, 53ffvelcdmd 7018 . . . . . . . . . . 11 (𝜑 → (𝐻𝐾) ∈ (Base‘𝑅))
11214, 98gsumccatsn 18748 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word (Base‘𝑅) ∧ (𝐻𝐾) ∈ (Base‘𝑅)) → (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
11397, 82, 111, 112syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
114 1arithidomlem.10 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
115114oveq2d 7362 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝐻𝑆)) = (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)))
116 1arithidomlem.8 . . . . . . . . . . 11 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
117116oveq2d 7362 . . . . . . . . . 10 (𝜑 → ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
118113, 115, 1173eqtr4d 2776 . . . . . . . . 9 (𝜑 → (𝑀 Σg (𝐻𝑆)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
119109, 110, 1183eqtr4rd 2777 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐻𝑆)) = ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
120119oveq2d 7362 . . . . . . 7 (𝜑 → (𝑁 · (𝑀 Σg (𝐻𝑆))) = (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)))
12111, 8, 4, 39, 41, 88ringassd 20173 . . . . . . . . 9 (𝜑 → ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = (𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
122121oveq1d 7361 . . . . . . . 8 (𝜑 → (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄) = ((𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))) · 𝑄))
12311, 8, 4, 41, 88ringcld 20176 . . . . . . . . 9 (𝜑 → (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ∈ (Base‘𝑅))
12411, 8, 4, 39, 123, 91ringassd 20173 . . . . . . . 8 (𝜑 → ((𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))) · 𝑄) = (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)))
125122, 124eqtr2d 2767 . . . . . . 7 (𝜑 → (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)) = (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
126107, 120, 1253eqtrd 2770 . . . . . 6 (𝜑 → ((𝑀 Σg 𝐹) · 𝑄) = (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
12711, 12, 8, 37, 89, 93, 3, 126idomrcan 33240 . . . . 5 (𝜑 → (𝑀 Σg 𝐹) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
1282, 10, 127rspcedvdw 3580 . . . 4 (𝜑 → ∃𝑙𝑈 (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
129 oveq1 7353 . . . . . 6 (𝑘 = 𝑙 → (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
130129eqeq2d 2742 . . . . 5 (𝑘 = 𝑙 → ((𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
131130cbvrexvw 3211 . . . 4 (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ ∃𝑙𝑈 (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
132128, 131sylibr 234 . . 3 (𝜑 → ∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
133 oveq2 7354 . . . . . . . 8 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑀 Σg 𝑔) = (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))
134133oveq2d 7362 . . . . . . 7 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑘 · (𝑀 Σg 𝑔)) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
135134eqeq2d 2742 . . . . . 6 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) ↔ (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
136135rexbidv 3156 . . . . 5 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) ↔ ∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
137 eqeq1 2735 . . . . . . . 8 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑔 = (𝑢f · (𝐹𝑤)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
138137anbi2d 630 . . . . . . 7 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ (𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
139138rexbidv 3156 . . . . . 6 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
140139exbidv 1922 . . . . 5 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
141136, 140imbi12d 344 . . . 4 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))) ↔ (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))))
142 1arithidomlem.2 . . . 4 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
143141, 142, 81rspcdva 3578 . . 3 (𝜑 → (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
144132, 143mpd 15 . 2 (𝜑 → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
145 oveq1 7353 . . . . . . 7 (𝑑 = 𝑢 → (𝑑f · (𝐹𝑐)) = (𝑢f · (𝐹𝑐)))
146145eqeq2d 2742 . . . . . 6 (𝑑 = 𝑢 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))))
147146anbi2d 630 . . . . 5 (𝑑 = 𝑢 → ((𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ (𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐)))))
148147cbvrexvw 3211 . . . 4 (∃𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))))
149 f1oeq1 6751 . . . . . 6 (𝑐 = 𝑤 → (𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ↔ 𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))))
150 coeq2 5798 . . . . . . . 8 (𝑐 = 𝑤 → (𝐹𝑐) = (𝐹𝑤))
151150oveq2d 7362 . . . . . . 7 (𝑐 = 𝑤 → (𝑢f · (𝐹𝑐)) = (𝑢f · (𝐹𝑤)))
152151eqeq2d 2742 . . . . . 6 (𝑐 = 𝑤 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
153149, 152anbi12d 632 . . . . 5 (𝑐 = 𝑤 → ((𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))) ↔ (𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
154153rexbidv 3156 . . . 4 (𝑐 = 𝑤 → (∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
155148, 154bitrid 283 . . 3 (𝑐 = 𝑤 → (∃𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
156155cbvexvw 2038 . 2 (∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
157144, 156sylibr 234 1 (𝜑 → ∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902   class class class wbr 5091  ccom 5620   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  0cc0 11003  1c1 11004   < clt 11143  cle 11144  cmin 11341  cn 12122  0cn0 12378  ...cfz 13404  ..^cfzo 13551  chash 14234  Word cword 14417   ++ cconcat 14474  ⟨“cs1 14500   prefix cpfx 14575  Basecbs 17117  .rcmulr 17159  0gc0g 17340   Σg cgsu 17341  Mndcmnd 18639  CMndccmn 19690  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150  rcdsr 20270  Unitcui 20271  RPrimecrpm 20348  IDomncidom 20606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-0g 17342  df-gsum 17343  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-rprm 20349  df-nzr 20426  df-domn 20608  df-idom 20609
This theorem is referenced by:  1arithidom  33497
  Copyright terms: Public domain W3C validator