Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithidomlem1 Structured version   Visualization version   GIF version

Theorem 1arithidomlem1 33528
Description: Lemma for 1arithidom 33530. (Contributed by Thierry Arnoux, 30-May-2025.)
Hypotheses
Ref Expression
1arithidom.u 𝑈 = (Unit‘𝑅)
1arithidom.i 𝑃 = (RPrime‘𝑅)
1arithidom.m 𝑀 = (mulGrp‘𝑅)
1arithidom.t · = (.r𝑅)
1arithidom.j 𝐽 = (0..^(♯‘𝐹))
1arithidom.r (𝜑𝑅 ∈ IDomn)
1arithidom.f (𝜑𝐹 ∈ Word 𝑃)
1arithidom.g (𝜑𝐺 ∈ Word 𝑃)
1arithidom.1 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))
1arithidomlem.1 (𝜑𝑄𝑃)
1arithidomlem.2 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
1arithidomlem.3 (𝜑𝐻 ∈ Word 𝑃)
1arithidomlem.4 (𝜑 → ∃𝑘𝑈 (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑘 · (𝑀 Σg 𝐻)))
1arithidomlem.5 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
1arithidomlem.6 (𝜑𝑄(∥r𝑅)(𝐻𝐾))
1arithidomlem.7 (𝜑𝑇𝑈)
1arithidomlem.8 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
1arithidomlem.9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1arithidomlem.10 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
1arithidomlem.11 (𝜑𝑁𝑈)
1arithidomlem.12 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
Assertion
Ref Expression
1arithidomlem1 (𝜑 → ∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))))
Distinct variable groups:   · ,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤   𝐹,𝑐,𝑑,𝑔,𝑘,𝑢,𝑤   𝐻,𝑐,𝑑,𝑔,𝑢,𝑤,𝑘   𝑘,𝐾,𝑢,𝑤   𝑔,𝑀,𝑢,𝑘   𝑢,𝑁,𝑤   𝑃,𝑔,𝑢,𝑘   𝑅,𝑔,𝑢,𝑘   𝑆,𝑐,𝑑,𝑔,𝑢,𝑤,𝑘   𝑢,𝑇,𝑤   𝑈,𝑐,𝑑,𝑔,𝑢,𝑤,𝑘   𝑄,𝑔,𝑢,𝑤,𝑘
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝑃(𝑤,𝑐,𝑑)   𝑄(𝑐,𝑑)   𝑅(𝑤,𝑐,𝑑)   𝑇(𝑔,𝑘,𝑐,𝑑)   𝐺(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝐽(𝑤,𝑢,𝑔,𝑘,𝑐,𝑑)   𝐾(𝑔,𝑐,𝑑)   𝑀(𝑤,𝑐,𝑑)   𝑁(𝑔,𝑘,𝑐,𝑑)

Proof of Theorem 1arithidomlem1
Dummy variables 𝑙 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . . . 6 (𝑙 = (𝑁 · 𝑇) → (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
21eqeq2d 2751 . . . . 5 (𝑙 = (𝑁 · 𝑇) → ((𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ (𝑀 Σg 𝐹) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
3 1arithidom.r . . . . . . 7 (𝜑𝑅 ∈ IDomn)
43idomringd 20750 . . . . . 6 (𝜑𝑅 ∈ Ring)
5 1arithidomlem.11 . . . . . 6 (𝜑𝑁𝑈)
6 1arithidomlem.7 . . . . . 6 (𝜑𝑇𝑈)
7 1arithidom.u . . . . . . 7 𝑈 = (Unit‘𝑅)
8 1arithidom.t . . . . . . 7 · = (.r𝑅)
97, 8unitmulcl 20406 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁𝑈𝑇𝑈) → (𝑁 · 𝑇) ∈ 𝑈)
104, 5, 6, 9syl3anc 1371 . . . . 5 (𝜑 → (𝑁 · 𝑇) ∈ 𝑈)
11 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
13 1arithidom.m . . . . . . . 8 𝑀 = (mulGrp‘𝑅)
1413, 11mgpbas 20167 . . . . . . 7 (Base‘𝑅) = (Base‘𝑀)
15 eqid 2740 . . . . . . . 8 (1r𝑅) = (1r𝑅)
1613, 15ringidval 20210 . . . . . . 7 (1r𝑅) = (0g𝑀)
17 id 22 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ IDomn)
1817idomcringd 20749 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
1913crngmgp 20268 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
2018, 19syl 17 . . . . . . . 8 (𝑅 ∈ IDomn → 𝑀 ∈ CMnd)
213, 20syl 17 . . . . . . 7 (𝜑𝑀 ∈ CMnd)
22 ovexd 7483 . . . . . . 7 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
23 eqidd 2741 . . . . . . . 8 (𝜑 → (♯‘𝐹) = (♯‘𝐹))
24 1arithidom.i . . . . . . . . . . . . 13 𝑃 = (RPrime‘𝑅)
25 simpl 482 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑅 ∈ IDomn)
26 simpr 484 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑞𝑃)
2711, 24, 25, 26rprmcl 33511 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ 𝑞𝑃) → 𝑞 ∈ (Base‘𝑅))
2827ex 412 . . . . . . . . . . 11 (𝑅 ∈ IDomn → (𝑞𝑃𝑞 ∈ (Base‘𝑅)))
2928ssrdv 4014 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑃 ⊆ (Base‘𝑅))
30 sswrd 14570 . . . . . . . . . 10 (𝑃 ⊆ (Base‘𝑅) → Word 𝑃 ⊆ Word (Base‘𝑅))
313, 29, 303syl 18 . . . . . . . . 9 (𝜑 → Word 𝑃 ⊆ Word (Base‘𝑅))
32 1arithidom.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝑃)
3331, 32sseldd 4009 . . . . . . . 8 (𝜑𝐹 ∈ Word (Base‘𝑅))
3423, 33wrdfd 32900 . . . . . . 7 (𝜑𝐹:(0..^(♯‘𝐹))⟶(Base‘𝑅))
35 fvexd 6935 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ V)
3635, 32wrdfsupp 32903 . . . . . . 7 (𝜑𝐹 finSupp (1r𝑅))
3714, 16, 21, 22, 34, 36gsumcl 19957 . . . . . 6 (𝜑 → (𝑀 Σg 𝐹) ∈ (Base‘𝑅))
3811, 7unitcl 20401 . . . . . . . . 9 (𝑁𝑈𝑁 ∈ (Base‘𝑅))
395, 38syl 17 . . . . . . . 8 (𝜑𝑁 ∈ (Base‘𝑅))
4011, 7unitcl 20401 . . . . . . . . 9 (𝑇𝑈𝑇 ∈ (Base‘𝑅))
416, 40syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (Base‘𝑅))
4211, 8, 4, 39, 41ringcld 20286 . . . . . . 7 (𝜑 → (𝑁 · 𝑇) ∈ (Base‘𝑅))
43 ovexd 7483 . . . . . . . 8 (𝜑 → (0..^((♯‘𝐻) − 1)) ∈ V)
44 1arithidomlem.9 . . . . . . . . . . . . 13 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
45 f1of 6862 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
46 iswrdi 14566 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 ∈ Word (0..^(♯‘𝐻)))
4744, 45, 463syl 18 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Word (0..^(♯‘𝐻)))
48 eqidd 2741 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘𝐻))
49 1arithidomlem.3 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Word 𝑃)
5048, 49wrdfd 32900 . . . . . . . . . . . 12 (𝜑𝐻:(0..^(♯‘𝐻))⟶𝑃)
51 wrdco 14880 . . . . . . . . . . . 12 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (𝐻𝑆) ∈ Word 𝑃)
5247, 50, 51syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) ∈ Word 𝑃)
53 1arithidomlem.5 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
54 elfzo0 13757 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝐻)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝐻) ∈ ℕ ∧ 𝐾 < (♯‘𝐻)))
5554simp2bi 1146 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝐻)) → (♯‘𝐻) ∈ ℕ)
56 nnm1nn0 12594 . . . . . . . . . . . . 13 ((♯‘𝐻) ∈ ℕ → ((♯‘𝐻) − 1) ∈ ℕ0)
5753, 55, 563syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ0)
58 lenco 14881 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (♯‘(𝐻𝑆)) = (♯‘𝑆))
5947, 50, 58syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐻𝑆)) = (♯‘𝑆))
60 lencl 14581 . . . . . . . . . . . . . 14 (𝑆 ∈ Word (0..^(♯‘𝐻)) → (♯‘𝑆) ∈ ℕ0)
6147, 60syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
6259, 61eqeltrd 2844 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐻𝑆)) ∈ ℕ0)
63 lencl 14581 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Word 𝑃 → (♯‘𝐻) ∈ ℕ0)
6449, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐻) ∈ ℕ0)
6564nn0red 12614 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐻) ∈ ℝ)
6665lem1d 12228 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘𝐻))
6744, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
68 ffn 6747 . . . . . . . . . . . . . . 15 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 Fn (0..^(♯‘𝐻)))
69 hashfn 14424 . . . . . . . . . . . . . . 15 (𝑆 Fn (0..^(♯‘𝐻)) → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
7067, 68, 693syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
71 hashfzo0 14479 . . . . . . . . . . . . . . 15 ((♯‘𝐻) ∈ ℕ0 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
7249, 63, 713syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
7359, 70, 723eqtrrd 2785 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘(𝐻𝑆)))
7466, 73breqtrd 5192 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆)))
75 elfz2nn0 13675 . . . . . . . . . . . 12 (((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))) ↔ (((♯‘𝐻) − 1) ∈ ℕ0 ∧ (♯‘(𝐻𝑆)) ∈ ℕ0 ∧ ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆))))
7657, 62, 74, 75syl3anbrc 1343 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))))
77 pfxlen 14731 . . . . . . . . . . 11 (((𝐻𝑆) ∈ Word 𝑃 ∧ ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆)))) → (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))) = ((♯‘𝐻) − 1))
7852, 76, 77syl2anc 583 . . . . . . . . . 10 (𝜑 → (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))) = ((♯‘𝐻) − 1))
7978eqcomd 2746 . . . . . . . . 9 (𝜑 → ((♯‘𝐻) − 1) = (♯‘((𝐻𝑆) prefix ((♯‘𝐻) − 1))))
80 pfxcl 14725 . . . . . . . . . . 11 ((𝐻𝑆) ∈ Word 𝑃 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word 𝑃)
8152, 80syl 17 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word 𝑃)
8231, 81sseldd 4009 . . . . . . . . 9 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word (Base‘𝑅))
8379, 82wrdfd 32900 . . . . . . . 8 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)):(0..^((♯‘𝐻) − 1))⟶(Base‘𝑅))
8417idomringd 20750 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
857, 151unit 20400 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
863, 84, 853syl 18 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝑈)
8786, 81wrdfsupp 32903 . . . . . . . 8 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) finSupp (1r𝑅))
8814, 16, 21, 43, 83, 87gsumcl 19957 . . . . . . 7 (𝜑 → (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) ∈ (Base‘𝑅))
8911, 8, 4, 42, 88ringcld 20286 . . . . . 6 (𝜑 → ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ∈ (Base‘𝑅))
90 1arithidomlem.1 . . . . . . . 8 (𝜑𝑄𝑃)
9111, 24, 3, 90rprmcl 33511 . . . . . . 7 (𝜑𝑄 ∈ (Base‘𝑅))
9224, 12, 3, 90rprmnz 33513 . . . . . . 7 (𝜑𝑄 ≠ (0g𝑅))
9391, 92eldifsnd 4812 . . . . . 6 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
94 1arithidomlem.12 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
9513ringmgp 20266 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
9684, 95syl 17 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑀 ∈ Mnd)
973, 96syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
9813, 8mgpplusg 20165 . . . . . . . . . 10 · = (+g𝑀)
9914, 98gsumccatsn 18878 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐹 ∈ Word (Base‘𝑅) ∧ 𝑄 ∈ (Base‘𝑅)) → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = ((𝑀 Σg 𝐹) · 𝑄))
10097, 33, 91, 99syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = ((𝑀 Σg 𝐹) · 𝑄))
101 ovexd 7483 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐻)) ∈ V)
10231, 49sseldd 4009 . . . . . . . . . . 11 (𝜑𝐻 ∈ Word (Base‘𝑅))
10348, 102wrdfd 32900 . . . . . . . . . 10 (𝜑𝐻:(0..^(♯‘𝐻))⟶(Base‘𝑅))
10435, 49wrdfsupp 32903 . . . . . . . . . 10 (𝜑𝐻 finSupp (1r𝑅))
10514, 16, 21, 101, 103, 104, 44gsumf1o 19958 . . . . . . . . 9 (𝜑 → (𝑀 Σg 𝐻) = (𝑀 Σg (𝐻𝑆)))
106105oveq2d 7464 . . . . . . . 8 (𝜑 → (𝑁 · (𝑀 Σg 𝐻)) = (𝑁 · (𝑀 Σg (𝐻𝑆))))
10794, 100, 1063eqtr3d 2788 . . . . . . 7 (𝜑 → ((𝑀 Σg 𝐹) · 𝑄) = (𝑁 · (𝑀 Σg (𝐻𝑆))))
10814, 98cmn12 19844 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑇 ∈ (Base‘𝑅) ∧ (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) ∈ (Base‘𝑅) ∧ 𝑄 ∈ (Base‘𝑅))) → (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
10921, 41, 88, 91, 108syl13anc 1372 . . . . . . . . 9 (𝜑 → (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
11011, 8, 4, 41, 88, 91ringassd 20284 . . . . . . . . 9 (𝜑 → ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄) = (𝑇 · ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · 𝑄)))
111103, 53ffvelcdmd 7119 . . . . . . . . . . 11 (𝜑 → (𝐻𝐾) ∈ (Base‘𝑅))
11214, 98gsumccatsn 18878 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ∈ Word (Base‘𝑅) ∧ (𝐻𝐾) ∈ (Base‘𝑅)) → (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
11397, 82, 111, 112syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
114 1arithidomlem.10 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
115114oveq2d 7464 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝐻𝑆)) = (𝑀 Σg (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩)))
116 1arithidomlem.8 . . . . . . . . . . 11 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
117116oveq2d 7464 . . . . . . . . . 10 (𝜑 → ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝐻𝐾)))
118113, 115, 1173eqtr4d 2790 . . . . . . . . 9 (𝜑 → (𝑀 Σg (𝐻𝑆)) = ((𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))) · (𝑇 · 𝑄)))
119109, 110, 1183eqtr4rd 2791 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐻𝑆)) = ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
120119oveq2d 7464 . . . . . . 7 (𝜑 → (𝑁 · (𝑀 Σg (𝐻𝑆))) = (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)))
12111, 8, 4, 39, 41, 88ringassd 20284 . . . . . . . . 9 (𝜑 → ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = (𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
122121oveq1d 7463 . . . . . . . 8 (𝜑 → (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄) = ((𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))) · 𝑄))
12311, 8, 4, 41, 88ringcld 20286 . . . . . . . . 9 (𝜑 → (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ∈ (Base‘𝑅))
12411, 8, 4, 39, 123, 91ringassd 20284 . . . . . . . 8 (𝜑 → ((𝑁 · (𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))) · 𝑄) = (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)))
125122, 124eqtr2d 2781 . . . . . . 7 (𝜑 → (𝑁 · ((𝑇 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄)) = (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
126107, 120, 1253eqtrd 2784 . . . . . 6 (𝜑 → ((𝑀 Σg 𝐹) · 𝑄) = (((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) · 𝑄))
12711, 12, 8, 37, 89, 93, 3, 126idomrcan 33248 . . . . 5 (𝜑 → (𝑀 Σg 𝐹) = ((𝑁 · 𝑇) · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
1282, 10, 127rspcedvdw 3638 . . . 4 (𝜑 → ∃𝑙𝑈 (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
129 oveq1 7455 . . . . . 6 (𝑘 = 𝑙 → (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
130129eqeq2d 2751 . . . . 5 (𝑘 = 𝑙 → ((𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
131130cbvrexvw 3244 . . . 4 (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) ↔ ∃𝑙𝑈 (𝑀 Σg 𝐹) = (𝑙 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
132128, 131sylibr 234 . . 3 (𝜑 → ∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
133 oveq2 7456 . . . . . . . 8 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑀 Σg 𝑔) = (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))
134133oveq2d 7464 . . . . . . 7 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑘 · (𝑀 Σg 𝑔)) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))))
135134eqeq2d 2751 . . . . . 6 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) ↔ (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
136135rexbidv 3185 . . . . 5 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) ↔ ∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1))))))
137 eqeq1 2744 . . . . . . . 8 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (𝑔 = (𝑢f · (𝐹𝑤)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
138137anbi2d 629 . . . . . . 7 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ (𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
139138rexbidv 3185 . . . . . 6 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
140139exbidv 1920 . . . . 5 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → (∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤))) ↔ ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
141136, 140imbi12d 344 . . . 4 (𝑔 = ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) → ((∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))) ↔ (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))))
142 1arithidomlem.2 . . . 4 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
143141, 142, 81rspcdva 3636 . . 3 (𝜑 → (∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg ((𝐻𝑆) prefix ((♯‘𝐻) − 1)))) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
144132, 143mpd 15 . 2 (𝜑 → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
145 oveq1 7455 . . . . . . 7 (𝑑 = 𝑢 → (𝑑f · (𝐹𝑐)) = (𝑢f · (𝐹𝑐)))
146145eqeq2d 2751 . . . . . 6 (𝑑 = 𝑢 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))))
147146anbi2d 629 . . . . 5 (𝑑 = 𝑢 → ((𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ (𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐)))))
148147cbvrexvw 3244 . . . 4 (∃𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))))
149 f1oeq1 6850 . . . . . 6 (𝑐 = 𝑤 → (𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ↔ 𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))))
150 coeq2 5883 . . . . . . . 8 (𝑐 = 𝑤 → (𝐹𝑐) = (𝐹𝑤))
151150oveq2d 7464 . . . . . . 7 (𝑐 = 𝑤 → (𝑢f · (𝐹𝑐)) = (𝑢f · (𝐹𝑤)))
152151eqeq2d 2751 . . . . . 6 (𝑐 = 𝑤 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐)) ↔ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
153149, 152anbi12d 631 . . . . 5 (𝑐 = 𝑤 → ((𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))) ↔ (𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
154153rexbidv 3185 . . . 4 (𝑐 = 𝑤 → (∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
155148, 154bitrid 283 . . 3 (𝑐 = 𝑤 → (∃𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤)))))
156155cbvexvw 2036 . 2 (∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))) ↔ ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑢f · (𝐹𝑤))))
157144, 156sylibr 234 1 (𝜑 → ∃𝑐𝑑 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑐:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝑑f · (𝐹𝑐))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  ccom 5704   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  0cc0 11184  1c1 11185   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643   prefix cpfx 14718  Basecbs 17258  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  CMndccmn 19822  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261  rcdsr 20380  Unitcui 20381  RPrimecrpm 20458  IDomncidom 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-rprm 20459  df-nzr 20539  df-domn 20717  df-idom 20718
This theorem is referenced by:  1arithidom  33530
  Copyright terms: Public domain W3C validator