| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmirredlem | Structured version Visualization version GIF version | ||
| Description: Lemma for rprmirred 33502. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmirredlem.1 | ⊢ 𝐵 = (Base‘𝑅) |
| rprmirredlem.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| rprmirredlem.3 | ⊢ 0 = (0g‘𝑅) |
| rprmirredlem.4 | ⊢ · = (.r‘𝑅) |
| rprmirredlem.5 | ⊢ ∥ = (∥r‘𝑅) |
| rprmirredlem.6 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| rprmirredlem.7 | ⊢ (𝜑 → 𝑄 ≠ 0 ) |
| rprmirredlem.8 | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑈)) |
| rprmirredlem.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rprmirredlem.10 | ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) |
| rprmirredlem.11 | ⊢ (𝜑 → 𝑄 ∥ 𝑋) |
| Ref | Expression |
|---|---|
| rprmirredlem | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmirredlem.6 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20636 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ CRing) |
| 4 | rprmirredlem.9 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∈ 𝐵) |
| 6 | rprmirredlem.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | rprmirredlem.3 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 8 | rprmirredlem.4 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 9 | 3 | crngringd 20155 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ Ring) |
| 10 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑡 ∈ 𝐵) | |
| 11 | 6, 8, 9, 10, 5 | ringcld 20169 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑌) ∈ 𝐵) |
| 12 | eqid 2729 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 13 | 6, 12 | ringidcl 20174 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 14 | 9, 13 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (1r‘𝑅) ∈ 𝐵) |
| 15 | rprmirredlem.11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑄 ∥ 𝑋) | |
| 16 | rprmirredlem.5 | . . . . . . . . . . . 12 ⊢ ∥ = (∥r‘𝑅) | |
| 17 | 6, 16, 8 | dvdsr 20271 | . . . . . . . . . . 11 ⊢ (𝑄 ∥ 𝑋 ↔ (𝑄 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋)) |
| 18 | 15, 17 | sylib 218 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑄 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋)) |
| 19 | 18 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ∈ 𝐵) |
| 21 | rprmirredlem.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝑄 ≠ 0 ) | |
| 22 | 21 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ≠ 0 ) |
| 23 | 20, 22 | eldifsnd 4751 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ∈ (𝐵 ∖ { 0 })) |
| 24 | 1 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ IDomn) |
| 25 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑄) = 𝑋) | |
| 26 | 25 | oveq1d 7402 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑄) · 𝑌) = (𝑋 · 𝑌)) |
| 27 | rprmirredlem.10 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) | |
| 28 | 27 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 = (𝑋 · 𝑌)) |
| 29 | 26, 28 | eqtr4d 2767 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑄) · 𝑌) = 𝑄) |
| 30 | 6, 8, 3, 10, 5, 20 | crng32d 20168 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑌) · 𝑄) = ((𝑡 · 𝑄) · 𝑌)) |
| 31 | 6, 8, 12, 9, 20 | ringlidmd 20181 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((1r‘𝑅) · 𝑄) = 𝑄) |
| 32 | 29, 30, 31 | 3eqtr4d 2774 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑌) · 𝑄) = ((1r‘𝑅) · 𝑄)) |
| 33 | 6, 7, 8, 11, 14, 23, 24, 32 | idomrcan 33229 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑌) = (1r‘𝑅)) |
| 34 | 18 | simprd 495 | . . . . . 6 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋) |
| 35 | 33, 34 | reximddv3 3150 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅)) |
| 36 | 35 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅)) |
| 37 | 6, 16, 8 | dvdsr 20271 | . . . 4 ⊢ (𝑌 ∥ (1r‘𝑅) ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅))) |
| 38 | 5, 36, 37 | sylanbrc 583 | . . 3 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∥ (1r‘𝑅)) |
| 39 | rprmirredlem.2 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 40 | 39, 12, 16 | crngunit 20287 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑌 ∈ 𝑈 ↔ 𝑌 ∥ (1r‘𝑅))) |
| 41 | 40 | biimpar 477 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ (1r‘𝑅)) → 𝑌 ∈ 𝑈) |
| 42 | 3, 38, 41 | syl2anc 584 | . 2 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∈ 𝑈) |
| 43 | 42, 34 | r19.29a 3141 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∖ cdif 3911 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 0gc0g 17402 1rcur 20090 Ringcrg 20142 CRingccrg 20143 ∥rcdsr 20263 Unitcui 20264 IDomncidom 20602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-nzr 20422 df-domn 20604 df-idom 20605 |
| This theorem is referenced by: rprmirred 33502 |
| Copyright terms: Public domain | W3C validator |