| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmirredlem | Structured version Visualization version GIF version | ||
| Description: Lemma for rprmirred 33496. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmirredlem.1 | ⊢ 𝐵 = (Base‘𝑅) |
| rprmirredlem.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| rprmirredlem.3 | ⊢ 0 = (0g‘𝑅) |
| rprmirredlem.4 | ⊢ · = (.r‘𝑅) |
| rprmirredlem.5 | ⊢ ∥ = (∥r‘𝑅) |
| rprmirredlem.6 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| rprmirredlem.7 | ⊢ (𝜑 → 𝑄 ≠ 0 ) |
| rprmirredlem.8 | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑈)) |
| rprmirredlem.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rprmirredlem.10 | ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) |
| rprmirredlem.11 | ⊢ (𝜑 → 𝑄 ∥ 𝑋) |
| Ref | Expression |
|---|---|
| rprmirredlem | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmirredlem.6 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20642 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ CRing) |
| 4 | rprmirredlem.9 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∈ 𝐵) |
| 6 | rprmirredlem.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | rprmirredlem.3 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 8 | rprmirredlem.4 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 9 | 3 | crngringd 20164 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ Ring) |
| 10 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑡 ∈ 𝐵) | |
| 11 | 6, 8, 9, 10, 5 | ringcld 20178 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑌) ∈ 𝐵) |
| 12 | eqid 2731 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 13 | 6, 12 | ringidcl 20183 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 14 | 9, 13 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (1r‘𝑅) ∈ 𝐵) |
| 15 | rprmirredlem.11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑄 ∥ 𝑋) | |
| 16 | rprmirredlem.5 | . . . . . . . . . . . 12 ⊢ ∥ = (∥r‘𝑅) | |
| 17 | 6, 16, 8 | dvdsr 20280 | . . . . . . . . . . 11 ⊢ (𝑄 ∥ 𝑋 ↔ (𝑄 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋)) |
| 18 | 15, 17 | sylib 218 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑄 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋)) |
| 19 | 18 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ∈ 𝐵) |
| 21 | rprmirredlem.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝑄 ≠ 0 ) | |
| 22 | 21 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ≠ 0 ) |
| 23 | 20, 22 | eldifsnd 4736 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ∈ (𝐵 ∖ { 0 })) |
| 24 | 1 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ IDomn) |
| 25 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑄) = 𝑋) | |
| 26 | 25 | oveq1d 7361 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑄) · 𝑌) = (𝑋 · 𝑌)) |
| 27 | rprmirredlem.10 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) | |
| 28 | 27 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 = (𝑋 · 𝑌)) |
| 29 | 26, 28 | eqtr4d 2769 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑄) · 𝑌) = 𝑄) |
| 30 | 6, 8, 3, 10, 5, 20 | crng32d 20177 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑌) · 𝑄) = ((𝑡 · 𝑄) · 𝑌)) |
| 31 | 6, 8, 12, 9, 20 | ringlidmd 20190 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((1r‘𝑅) · 𝑄) = 𝑄) |
| 32 | 29, 30, 31 | 3eqtr4d 2776 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑌) · 𝑄) = ((1r‘𝑅) · 𝑄)) |
| 33 | 6, 7, 8, 11, 14, 23, 24, 32 | idomrcan 33245 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑌) = (1r‘𝑅)) |
| 34 | 18 | simprd 495 | . . . . . 6 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋) |
| 35 | 33, 34 | reximddv3 3149 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅)) |
| 36 | 35 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅)) |
| 37 | 6, 16, 8 | dvdsr 20280 | . . . 4 ⊢ (𝑌 ∥ (1r‘𝑅) ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅))) |
| 38 | 5, 36, 37 | sylanbrc 583 | . . 3 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∥ (1r‘𝑅)) |
| 39 | rprmirredlem.2 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 40 | 39, 12, 16 | crngunit 20296 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑌 ∈ 𝑈 ↔ 𝑌 ∥ (1r‘𝑅))) |
| 41 | 40 | biimpar 477 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ (1r‘𝑅)) → 𝑌 ∈ 𝑈) |
| 42 | 3, 38, 41 | syl2anc 584 | . 2 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∈ 𝑈) |
| 43 | 42, 34 | r19.29a 3140 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∖ cdif 3894 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 0gc0g 17343 1rcur 20099 Ringcrg 20151 CRingccrg 20152 ∥rcdsr 20272 Unitcui 20273 IDomncidom 20608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-nzr 20428 df-domn 20610 df-idom 20611 |
| This theorem is referenced by: rprmirred 33496 |
| Copyright terms: Public domain | W3C validator |