| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmirredlem | Structured version Visualization version GIF version | ||
| Description: Lemma for rprmirred 33495. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmirredlem.1 | ⊢ 𝐵 = (Base‘𝑅) |
| rprmirredlem.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| rprmirredlem.3 | ⊢ 0 = (0g‘𝑅) |
| rprmirredlem.4 | ⊢ · = (.r‘𝑅) |
| rprmirredlem.5 | ⊢ ∥ = (∥r‘𝑅) |
| rprmirredlem.6 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| rprmirredlem.7 | ⊢ (𝜑 → 𝑄 ≠ 0 ) |
| rprmirredlem.8 | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑈)) |
| rprmirredlem.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rprmirredlem.10 | ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) |
| rprmirredlem.11 | ⊢ (𝜑 → 𝑄 ∥ 𝑋) |
| Ref | Expression |
|---|---|
| rprmirredlem | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmirredlem.6 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20647 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ CRing) |
| 4 | rprmirredlem.9 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∈ 𝐵) |
| 6 | rprmirredlem.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | rprmirredlem.3 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 8 | rprmirredlem.4 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 9 | 3 | crngringd 20166 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ Ring) |
| 10 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑡 ∈ 𝐵) | |
| 11 | 6, 8, 9, 10, 5 | ringcld 20180 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑌) ∈ 𝐵) |
| 12 | eqid 2729 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 13 | 6, 12 | ringidcl 20185 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 14 | 9, 13 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (1r‘𝑅) ∈ 𝐵) |
| 15 | rprmirredlem.11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑄 ∥ 𝑋) | |
| 16 | rprmirredlem.5 | . . . . . . . . . . . 12 ⊢ ∥ = (∥r‘𝑅) | |
| 17 | 6, 16, 8 | dvdsr 20282 | . . . . . . . . . . 11 ⊢ (𝑄 ∥ 𝑋 ↔ (𝑄 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋)) |
| 18 | 15, 17 | sylib 218 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑄 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋)) |
| 19 | 18 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ∈ 𝐵) |
| 21 | rprmirredlem.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝑄 ≠ 0 ) | |
| 22 | 21 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ≠ 0 ) |
| 23 | 20, 22 | eldifsnd 4747 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ∈ (𝐵 ∖ { 0 })) |
| 24 | 1 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ IDomn) |
| 25 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑄) = 𝑋) | |
| 26 | 25 | oveq1d 7384 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑄) · 𝑌) = (𝑋 · 𝑌)) |
| 27 | rprmirredlem.10 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) | |
| 28 | 27 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 = (𝑋 · 𝑌)) |
| 29 | 26, 28 | eqtr4d 2767 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑄) · 𝑌) = 𝑄) |
| 30 | 6, 8, 3, 10, 5, 20 | crng32d 20179 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑌) · 𝑄) = ((𝑡 · 𝑄) · 𝑌)) |
| 31 | 6, 8, 12, 9, 20 | ringlidmd 20192 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((1r‘𝑅) · 𝑄) = 𝑄) |
| 32 | 29, 30, 31 | 3eqtr4d 2774 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑌) · 𝑄) = ((1r‘𝑅) · 𝑄)) |
| 33 | 6, 7, 8, 11, 14, 23, 24, 32 | idomrcan 33245 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑌) = (1r‘𝑅)) |
| 34 | 18 | simprd 495 | . . . . . 6 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋) |
| 35 | 33, 34 | reximddv3 3150 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅)) |
| 36 | 35 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅)) |
| 37 | 6, 16, 8 | dvdsr 20282 | . . . 4 ⊢ (𝑌 ∥ (1r‘𝑅) ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅))) |
| 38 | 5, 36, 37 | sylanbrc 583 | . . 3 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∥ (1r‘𝑅)) |
| 39 | rprmirredlem.2 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 40 | 39, 12, 16 | crngunit 20298 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑌 ∈ 𝑈 ↔ 𝑌 ∥ (1r‘𝑅))) |
| 41 | 40 | biimpar 477 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ (1r‘𝑅)) → 𝑌 ∈ 𝑈) |
| 42 | 3, 38, 41 | syl2anc 584 | . 2 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∈ 𝑈) |
| 43 | 42, 34 | r19.29a 3141 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∖ cdif 3908 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 .rcmulr 17197 0gc0g 17378 1rcur 20101 Ringcrg 20153 CRingccrg 20154 ∥rcdsr 20274 Unitcui 20275 IDomncidom 20613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-sbg 18852 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-nzr 20433 df-domn 20615 df-idom 20616 |
| This theorem is referenced by: rprmirred 33495 |
| Copyright terms: Public domain | W3C validator |