![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmirredlem | Structured version Visualization version GIF version |
Description: Lemma for rprmirred 33524. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
rprmirredlem.1 | ⊢ 𝐵 = (Base‘𝑅) |
rprmirredlem.2 | ⊢ 𝑈 = (Unit‘𝑅) |
rprmirredlem.3 | ⊢ 0 = (0g‘𝑅) |
rprmirredlem.4 | ⊢ · = (.r‘𝑅) |
rprmirredlem.5 | ⊢ ∥ = (∥r‘𝑅) |
rprmirredlem.6 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
rprmirredlem.7 | ⊢ (𝜑 → 𝑄 ≠ 0 ) |
rprmirredlem.8 | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑈)) |
rprmirredlem.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rprmirredlem.10 | ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) |
rprmirredlem.11 | ⊢ (𝜑 → 𝑄 ∥ 𝑋) |
Ref | Expression |
---|---|
rprmirredlem | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprmirredlem.6 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | 1 | idomcringd 20749 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) |
3 | 2 | ad2antrr 725 | . . 3 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ CRing) |
4 | rprmirredlem.9 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | 4 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∈ 𝐵) |
6 | rprmirredlem.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
7 | rprmirredlem.3 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
8 | rprmirredlem.4 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
9 | 3 | crngringd 20273 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ Ring) |
10 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑡 ∈ 𝐵) | |
11 | 6, 8, 9, 10, 5 | ringcld 20286 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑌) ∈ 𝐵) |
12 | eqid 2740 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
13 | 6, 12 | ringidcl 20289 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
14 | 9, 13 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (1r‘𝑅) ∈ 𝐵) |
15 | rprmirredlem.11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑄 ∥ 𝑋) | |
16 | rprmirredlem.5 | . . . . . . . . . . . 12 ⊢ ∥ = (∥r‘𝑅) | |
17 | 6, 16, 8 | dvdsr 20388 | . . . . . . . . . . 11 ⊢ (𝑄 ∥ 𝑋 ↔ (𝑄 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋)) |
18 | 15, 17 | sylib 218 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑄 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋)) |
19 | 18 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
20 | 19 | ad2antrr 725 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ∈ 𝐵) |
21 | rprmirredlem.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝑄 ≠ 0 ) | |
22 | 21 | ad2antrr 725 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ≠ 0 ) |
23 | 20, 22 | eldifsnd 4812 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 ∈ (𝐵 ∖ { 0 })) |
24 | 1 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑅 ∈ IDomn) |
25 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑄) = 𝑋) | |
26 | 25 | oveq1d 7463 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑄) · 𝑌) = (𝑋 · 𝑌)) |
27 | rprmirredlem.10 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) | |
28 | 27 | ad2antrr 725 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑄 = (𝑋 · 𝑌)) |
29 | 26, 28 | eqtr4d 2783 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑄) · 𝑌) = 𝑄) |
30 | 6, 8, 3, 10, 5, 20 | cringmul32d 33208 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑌) · 𝑄) = ((𝑡 · 𝑄) · 𝑌)) |
31 | 6, 8, 12, 9, 20 | ringlidmd 20295 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((1r‘𝑅) · 𝑄) = 𝑄) |
32 | 29, 30, 31 | 3eqtr4d 2790 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ((𝑡 · 𝑌) · 𝑄) = ((1r‘𝑅) · 𝑄)) |
33 | 6, 7, 8, 11, 14, 23, 24, 32 | idomrcan 33248 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → (𝑡 · 𝑌) = (1r‘𝑅)) |
34 | 18 | simprd 495 | . . . . . 6 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑄) = 𝑋) |
35 | 33, 34 | reximddv3 3178 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅)) |
36 | 35 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅)) |
37 | 6, 16, 8 | dvdsr 20388 | . . . 4 ⊢ (𝑌 ∥ (1r‘𝑅) ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑌) = (1r‘𝑅))) |
38 | 5, 36, 37 | sylanbrc 582 | . . 3 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∥ (1r‘𝑅)) |
39 | rprmirredlem.2 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
40 | 39, 12, 16 | crngunit 20404 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑌 ∈ 𝑈 ↔ 𝑌 ∥ (1r‘𝑅))) |
41 | 40 | biimpar 477 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ (1r‘𝑅)) → 𝑌 ∈ 𝑈) |
42 | 3, 38, 41 | syl2anc 583 | . 2 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡 · 𝑄) = 𝑋) → 𝑌 ∈ 𝑈) |
43 | 42, 34 | r19.29a 3168 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∖ cdif 3973 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 1rcur 20208 Ringcrg 20260 CRingccrg 20261 ∥rcdsr 20380 Unitcui 20381 IDomncidom 20715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-nzr 20539 df-domn 20717 df-idom 20718 |
This theorem is referenced by: rprmirred 33524 |
Copyright terms: Public domain | W3C validator |